Math 220 Final Exam (part 1) Solutions

- 1. Evaluate each of the following limits, showing your work. If a limit has value $\pm \infty$, give that rather than "does not exist." (3 points each)
 - (a) $\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$

Solution. This is a limit giving the derivative of $f(x) = \sqrt{x}$ at x = 1. Since $f'(x) = \frac{1}{2\sqrt{x}}$, the value of the limit is $f'(1) = \frac{1}{2}$. Alternatively, you can use L'Hospital's rule.

(b) $\lim_{h\to 2^+} \frac{h^2-2}{h-2}$

Solution. As $h \to 2^+$, the numerator is positive and the denominator approaches 0 from above. Therefore the limit is ∞ . Note that L'Hospital's rule does not apply since the limit of the numerator is not 0.

(c) $\lim_{x\to 0} (1 + \sin(2x))^{1/x}$

Solution. Let $f(x) = (1 + \sin(2x))^{1/x}$. Taking logarithms,

$$\ln(f) = \frac{\ln(1 + \sin(2x))}{x}.$$

Both numerator and denominator tend to 0, so L'Hospital's rule applies. Differentiating top and bottom, we get

$$\frac{2\cos(2x)/(1+\sin(2x))}{1}.$$

This tends to 2 as $x \to 0$. Since $\lim_{x\to 0} \ln(f(x)) = 2$, $\lim_{x\to 0} f(x) = e^2$.

(d) $\lim_{x\to\infty} x^2 e^{-x} \sin(x)$

Solution. As $x \to \infty$, note that $x^2 \to \infty$, $e^{-x} \to 0$ and $\sin(x)$ oscillates. Consider $x^2 e^{-x}$. Either using L'Hospital's rule twice, or what we learned about limits of products of exponentials and polynomials, we see that $x^2 e^{-x} \to 0$. Therefore $\lim_{x \to \infty} x^2 e^{-x} \sin(x) = 0$ as well. If you want to be more rigorous, you can use the Squeeze theorem.

- 2. Find the following derivatives. (3 points each)
 - (a) Find the derivative of

$$f(x) = \frac{1 + x^3 e^x}{1 - x^2}.$$

Solution. By the quotient rule and product rule,

$$f'(x) = \frac{(3x^2e^x + x^3e^x)(1 - x^2) - (1 + x^3e^x)(-2x)}{(1 - x^2)^2}$$
$$= \frac{(-x^5 - x^4 + x^3 + 3x^2)e^x + 2x}{(1 - x^2)^2}$$

(b) Find the derivative of

$$q(x) = \cosh(\cos(\ln|x|)).$$

Solution. Using the chain rule,

$$g'(x) = \sinh(\cos(\ln|x|))(-\sin(\ln|x|)) \cdot \frac{1}{x}$$

(c) Find the derivative of

$$h(x) = (2 + \sin(x))^x.$$

Solution. Using logarithmic differentiation,

$$\ln(h(x)) = x \ln(2 + \sin(x))$$

$$\frac{h'(x)}{h(x)} = \ln(2 + \sin(x)) + \frac{x \cos(x)}{2 + \sin(x)}$$

$$h'(x) = \left(\ln(2 + \sin(x)) + \frac{x \cos(x)}{2 + \sin(x)}\right) (2 + \sin(x))^{x}.$$

You can also rewrite $h(x) = e^{x \ln(2+\sin(x))}$ and use the chain rule.

(d) Suppose that y(x) satisfies

$$3x^2y^3 - e^y = 3 - e$$

and y(1) = 1. Find y'(1).

Solution. Using implicit differentiation,

$$6xy^{3} + 9x^{2}y^{2}y' - e^{y}y' = 0$$
$$6 + (9 - e)y'(1) = 0$$
$$y'(1) = \frac{6}{e - 9}.$$

3. Let

$$f(x) = \frac{1}{2}x^2e^{1-x^2}$$

with derivatives

$$f'(x) = (x - x^3)e^{1 - x^2}$$
$$f''(x) = (2x^4 - 5x^2 + 1)e^{1 - x^2}$$

(a) Where is f(x) increasing and where is it decreasing? Show your work. (3 points)

Solution. Note that e^{1-x^2} is always positive.

f(x) is increasing when f'(x) > 0, which occurs when $x - x^3 = x(1-x)(1+x) > 0$, which occurs for x < -1 and 0 < x < 1.

f(x) is decreasing when f'(x) < 0, which occurs when x(1-x)(1+x) < 0, or -1 < x < 0 and x > 1.

(b) Where is f(x) concave up and where is it concave down? Show your work. (3 points)

Hint: The equation $2x^4 - 5x^2 + 1 = 0$ has solutions $\pm \frac{\sqrt{5 \pm \sqrt{17}}}{2}$.

Solution. f(x) is concave up when f''(x) > 0 and concave down when f''(x) < 0. The roots of f''(x) are approximately -3/2, -1/2, 1/2, and 3/2 (noting that $\sqrt{17} \approx \sqrt{16} = 4$). Thus we can

compute

$$f''(-2) = (32 - 20 + 1)e^{-3} > 0$$

$$f''(-1) = (2 - 5 + 1) < 0$$

$$f''(0) = (1)e^{1} > 0$$

$$f''(1) = (2 - 5 + 1) < 0$$

$$f''(2) = (32 - 20 + 1)e^{-3} > 0.$$

Therefore f(x) is concave up on $(-\infty, -\frac{\sqrt{5+\sqrt{17}}}{2}) \cup (-\frac{\sqrt{5-\sqrt{17}}}{2}, \frac{\sqrt{5-\sqrt{17}}}{2}) \cup (\frac{\sqrt{5+\sqrt{17}}}{2}, \infty)$ and concave down on $(-\frac{\sqrt{5+\sqrt{17}}}{2}, -\frac{\sqrt{5-\sqrt{17}}}{2}) \cup (\frac{\sqrt{5-\sqrt{17}}}{2}, \frac{\sqrt{5+\sqrt{17}}}{2})$.

(c) Where does f(x) have local maxima and local minima? Show your work. (3 points)

Solution. The zeros of f'(x) are at x = -1, and x = 0 and x = 1. The first and third are maxima and the second is a minimum, all by the second derivative test and the computation in part (b).

(d) Which of the following is the graph of f(x)? (3 points)

Solution. The answer is (iv), since that is the only graph with the correct pattern of maximum, minimum, maximum.

4. Find the absolute minimum and maximum values of $f(x) = \frac{1}{4}x^4 - x^3 - 2x^2 + 1$ on the interval [-1, 2]. Show your work. (8 points)

Solution. The derivative is $f'(x) = x^3 - 3x^2 - 4x = x(x-4)(x+1)$. The only two critical points within the interval are at x = -1 and x = 0. Together with the endpoints, we need to compute

$$f(-1) = \frac{1}{4} + 1 - 2 + 1 = \frac{1}{4}$$

$$f(0) = 1$$

$$f(2) = 4 - 8 - 8 + 1 = -11.$$

Thus the minimum value is -11 and the maximum is 1.

- 5. Let $f(x) = 2x \sin(x)$.
 - (a) Find $f^{-1}(2\pi)$. Show your work. (4 points)

Solution. We need to solve $2x - \sin(x) = 2\pi$. There's not an easy way to solve equations like this generally (though you can use Newton's method to approximate a solution). In this case, without the sine term we would have $x = \pi$. Since $\sin(\pi) = 0$, $x = \pi$ is a solution (in fact, the only one). Thus $f^{-1}(2\pi) = \pi$.

(b) Find $(f^{-1})'(2\pi)$. Show your work. (4 points)

Solution. We have

$$(f^{-1})'(2\pi) = \frac{1}{f'(f^{-1}(2\pi))}$$
$$= \frac{1}{f'(\pi)}$$
$$= \frac{1}{2 - \cos(\pi)}$$
$$= \frac{1}{3}$$

6. The volume of a cube is increasing at a constant rate of 30 cubic meters per second. When the cube has volume 1000 cubic meters, how fast is its surface area increasing? (8 points)

Solution. If x is the side length of the cube (x = 10 at the moment that V = 1000), then $V = x^3$ and $A = 6x^2$. Differentiating gives

$$V' = 3x^2x' = 300x'$$

 $A' = 12xx' = 120x'$

Since V' = 30, we have x' = 0.1 and A' = 12. So the surface area is increasing at a rate of 12 square meters per second.