1. (a) Find the derivative of the function

$$f(x) = \frac{1}{x} + 2\cos x + 3\tan x + 4\cot x + 5\ln x + 6e^x + \log_7 x + 8^x + 9\arctan x + \arcsin x$$

- (b) Let $f(x) = x^2$. Find f'(2) by using only the definition of the derivative.
- (c) Geometrically, the definite integral $\int_a^b f(x) dx$ represents the area of a certain region on the x-y plane that is related to the curve y=f(x).

Using only this geometrical interpretation fin $\int_0^3 (2x+1)dx$.

- 2. Let $\vec{a} = \langle 2, 1 \rangle$ and $\vec{b} = \langle 1, 3 \rangle$
 - (a) Find the angle between \vec{a} and \vec{b}
 - (b) Let P(=(1,3), Q=(-1,5) and S=(5,7) be points in a plane. Find the fourth vertex of the parallelogram whose sides are \vec{PQ} and \vec{PS} .
- 3. The position vector of a particle traveling on the x-y plane at time t is $\vec{r}(t) = \langle t, 8t-t^2 \rangle$, where t is measured in seconds and coordinates are in meters.
 - (a) Find the particle's average velocity vector during the time interval [0, 2].
 - (b) Find the particle's velocity vector, speed, and acceleration vector at time t = 1.
 - (c) Find a non-parametric equation describing the curve that the particle passes by.
- 4. Find the derivatives of the following functions.

(a)
$$f(x) = (x^2 + x + 1)(x^3 - 3x^2 + x + 1)$$
. [no simplification for answer]

(b)
$$g(x) = \frac{x+1}{x^2+1}$$
.

(c)
$$p(x) = (1+x^4)^{10}$$

(d)
$$q(x) = \sin\left(\frac{1}{xe^{2x}}\right)$$

5. (a) Evaluate $\lim_{h\to 0} \frac{(x+h)^2 - x^2}{h}$

- (b) Evaluate $\lim_{x \to 0} \frac{1 e^x}{\sin x}$
- (c) Evaluate $\lim_{x \to 1} \frac{x-1}{|x-1|}$
- (d) Evaluate $\lim_{x\to 0} \left(\frac{1+x}{x\cos x} \frac{1}{x} \right)$
- 6. (a) Find the Riemann sum $R_4 = \sum_{i=1}^{4} 4 f(c_i)(x_i x_{i-1})$ for $\int_0^8 x^2 dx$ with regular partition points $x_i = 2i$ for i = 0, 1, 2, 3, 4, and the middle point rule: $c_i = \frac{1}{2}(x_{i-1} + x_i)$.
 - (b) Evaluate the definite integral $\int_0^8 x^2 dx$.
 - (c) Evaluate the indefinite integral

$$\int \left(x^2 + \frac{2}{x} + 3\cos x + \frac{4}{\sqrt{1 - x^2}} + \frac{5}{1 + x^2}\right)$$

- (d) Find the derivative of the function $F(x) = \int_0^x t^2 e^{t^2} dt$.
- 7. (a) Use a linear approximation or a differential for the function $f(x) = x^{1/3}$ at a = 1000 to find an approximation to $\sqrt[3]{1003} \sqrt[3]{1000}$.
 - (b) Let Use the Newton's Method to find a rational number that approximates the positive root to $x^2 2 = 0$.
- 8. The derivatives of the function $f(x) = xe^{-x^2/2}$ are calculated as follows

$$f'(x) = (1 - x^2)e^{-x^2/2},$$
 $f''(x) = x(x^2 - 3)e^{-x^2/2}$

- (a) Find the intervals where f is increasing or decreasing. Also find points of local or global minimum or maximum.
- (b) Find intervals where f is concave up or concave down. Also find points of inflection.

- (c) Find any horizontal asymptotes.
- (d) Sketch the curve of y = f(x) for $-\infty < x < \infty$.
- 9. A box with a square base, rectangular sides, and open top must have a volume of 1000 cm³. The material for the base costs \$4/cm² and that for the sides \$2/cm². Find the dimensions of a box that minimizes the cost of material used.
- 10. A swimming pool of dimension $100(m) \times 200(m)$ and horizontal bottom is drained at a rate of 2 m³/min. Find the rate of decreasing of the depth of the water in the pool.
- 11. (a) Let $q(x) = x^x$. Using the logarithmic differentiation technique, find q'(x).
 - (b) Let y = y(x) be implicitly defined by $y^3 + xy = 1$. Using the implicit differentiation technique, find y'(x).
 - (c) Find the equation of the line that has slope 3 and is tangent to the curve given parametrically by $x = t^2 + 1$, $y = t^3$.