1. Give a value for each of the following limits (including ∞ or $-\infty$ if applicable). (4 points each)

(a) $\lim_{x \to 2} \frac{x^2 - 2x}{\sqrt{x + 2} - \sqrt{2x}}$

(b) $\lim_{\theta \to \pi^-} \cot(\theta)$

(c) $\lim_{t \to 0} \left(\frac{1}{t^2 - t} + \frac{1}{t^2 + t} \right)$
2. Consider the functions $f(x)$ and $g(x)$ shown below:

$$f(x) \quad g(x)$$

(a) Find $\lim_{x \to 2} g(f(x))$. (4 points)

(b) Where is $f(x)$ continuous? (1 point)

(c) Where is $g(x)$ continuous? (1 point)

(d) Where is $g(f(x))$ continuous? Justify your answer. (6 points)
3. Determine the derivatives of the following functions. (4 points each)

(a) \(f(x) = (\sin((1 + x)^7))^3 \)

(b) \(f(x) = x \sin(x) \sqrt[3]{1 + x} \)

(c) \(f(x) = \frac{x + \tan(x)}{1 - \cos^2(x)} \)

(d) \(f(x) = x^2 \sin \left(\frac{1}{x} \right) \)

(e) \(f(x) = (x^3 + 2)^5(x^2 - 2)^{-7/2} \)
4. Find an equation for the tangent line to the curve

\[y \cos(x) = 2 + \sin(xy) \]

at the point \((0, 2)\). (10 points)

5. A balloon is being filled with air at a rate of \(100 \text{ cm}^3/\text{s}\). Assuming that the balloon is spherical, how fast is its surface area increasing when its radius is 5 cm? (10 points)
6. Determine the tangent lines to the function \(f(x) = \frac{x^2+3x+1}{x-1} \) with slope \(-1\). (10 points)

7. Suppose that \(f(x) \) is a differentiable function, and \(h(x) = \sqrt{1-f(x)} \). If \(h(1) = 2 \) and \(h'(1) = -4 \), find \(f'(1) \). (10 points)
8. Let \(f(x) = x^9 \).

(a) Find a linear approximation to \(f(x) \) near \(x = a \). (4 points)

(b) Approximate \((1.01)^9 \). (4 points)
9. Match each graph with its derivative. (2 points per correct match)

(a) \(f(x) \)
(b) \(f(x) \)
(c) \(f(x) \)
(d) \(f(x) \)

(a)
(b)
(c)
(d)