1. (a) \(f'(x) = 2xe^{-3x} - 3x^2e^{-3x} + 3\ln(5)5^{3x} - \frac{6(1-6\sin(2x))}{x + 3\cos(2x)} \)

(b) \(y' = \frac{1}{1+49x^2} - \frac{6}{\sqrt{1-4x^2}} \)

(c) \(g'(x) = 6\sinh^2(2x)\cosh(2x) + 9\sinh(3x) \)

(d) \(h'(x) = \frac{-54e^{-2x}}{(1+9e^{-2x})^2} \)

3. (a) Evaluating top and bottom at 1 gives 0/0 so L'Hospital's Rule applies. Differentiating top and bottom gives

\(\frac{-1 + 1/x}{-\pi \sin(\pi x)} \).

Again, evaluating gives 0/0, so we differentiate again, giving

\(\frac{1/x^2}{\pi^2 \cos(\pi x)} \).

Now evaluating gives the answer, \(-\frac{1}{\pi^2} \).

(b) Taking the natural logarithm gives

\(\frac{\ln(x + \ln(x))}{x - 1} \),

and evaluating gives 0/0. Differentiating top and bottom, we get

\(\frac{1+1/x}{x+\ln(x)} \cdot \frac{1}{1} \),

which evaluates to 2. Therefore the original limit is

\(\lim_{x \to 1} (x + \ln(x))^{\frac{1}{x-1}} = e^2 \).

4. We need to find the minimum and maximum values to find the range.

\(f'(x) = 4x^3 - 12x^2 - 16x = 4x(x^2 - 3x - 4) = 4x(x - 4)(x + 1) \).

Thus the only critical point in the interval is \(x = 4 \), and the values of \(f(x) \) at the endpoints and this critical point are \(f(1) = -3 \), \(f(4) = -120 \) and \(f(5) = -67 \). Therefore the range is the closed interval \([-120, -3]\).

5. We have that \(y = \frac{45}{x} \) and we seek to minimize \(5x + 4y = 5x + 180/x \). Differentiating,

\(5 - \frac{180}{x^2} = 0 \)

\(x^2 = 36 \)

\(x = \pm 6 \)

The problem asked for a positive value of \(x \), so we have \(x = 6 \) and \(y = \frac{45}{6} = 7.5 \).
6. There are vertical asymptotes at \(x = \pm \sqrt{3} \). There are no horizontal asymptotes since the degree of
the numerator is greater than the degree of the denominator.

We have \(f(0) = 0 \), and this is the only \(x \)-intercept (and the unique \(y \)-intercept, as normal).

The derivative vanishes at \(-3\), at 0 and at 3, and these are a maximum, neither min nor max, minimum
respectively (by the first derivative test). The graph of \(f(x) \) increases to a local maximum at \((-3, -18)\)
the descends to \(-\infty\) as \(x \rightarrow -\sqrt{3} \) from below, and descending from \(+\infty \) as \(x \) increases above \(-\sqrt{3}\).

There is a horizontal tangent line at \(x = 0 \) (through the axis-intercepts at \((0,0)\)), and then \(f(x) \)
continues to decrease to \(-\infty\) as \(x \rightarrow +\sqrt{3} \). It then descends from \(+\infty \) as \(x \) increases above \(+\sqrt{3}\),
decreasing to a local minimum at \((3, 18)\) and then \(f(x) \rightarrow \infty \) as \(x \rightarrow \infty \).