The Matrix Inversion Algorithm 000000

Properties of Inversion

Linear Methods (Math 211) Lecture 10 - §2.4

(with slides adapted from K. Seyffarth)

David Roe

September 30, 2013

The Matrix Inversion Algorithm

Properties of Inversion

Recall

- More Block Multiplication
- 2 Matrix Inverses for 2×2 Matrices

The Matrix Inversion Algorithm

Properties of Inversion

2 The Matrix Inversion Algorithm

Operation Properties of Inversion

The Matrix Inversion Algorithm 000000

Properties of Inversion

Exam Information

- The first midterm will be held **7pm to 9pm** on **Tuesday**, **October 8** in **ICT 102**.
- If you have a conflict with this time you should notify me immediately by e-mail (roed.math@gmail.com).
- If you are sick and can't attend the exam, e-mail me **before the exam**.

The Matrix Inversion Algorithm 000000

Properties of Inversion

Exam Regulations

- Calculators and other electronic devices are **not** permitted.
- You should bring your **student ID** or other form of identification.
- There will be a TA in the room available to answer questions.
- Obviously, collaboration and copying are not permitted.
- See the University Calendar (section G) for more details.

Exam Topics

- $\S{1.1}$ Solutions and Elementary Operations
- $\S1.2$ Gaussian Elimination
- $\S1.3$ Homogeneous Equations
- $\S 2.1$ Matrix Addition, Scalar Multiplication, and Transposition
- $\S2.2$ Equations, Matrices, and Transformations
- §2.3 Matrix Multiplication (no Block Multiplication or Directed Graphs)
- §2.4 Matrix Inverses (up to but NOT including Inverses of Matrix Transformations)

The Matrix Inversion Algorithm 000000

Properties of Inversion

Review Opportunities

- I will hold an hour-long, in-class review either Friday or Monday (class vote)
- Calgary SOS (student group) is running a review session
 5pm-8pm on Friday, October 4 in ST 128. It costs \$20.
- There are two practice midterms posted on Blackboard. Solutions will be posted on Friday.
- Your lab this week is a good place to ask questions.
- You can also get help in continuous tutorial in MS 569
- I will have office hours **Monday 12-2** in **MS 452**. I am permanently moving my Wednesday office hours to **Friday**, still 11-12.

The Matrix Inversion Algorithm •00000 Properties of Inversion

The Matrix Inversion Algorithm

Example Let $A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$. Find the inverse of A, if it exists.

The Matrix Inversion Algorithm •00000 Properties of Inversion

The Matrix Inversion Algorithm

Example

Let
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$
. Find the inverse of A , if it exists.

Begin with a matrix obtained from A by **augmenting** A with the 3×3 identity matrix. We write this as

$$\begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 \mid 1 & 0 & 0 \\ 1 & -1 & 3 \mid 0 & 1 & 0 \\ 1 & 2 & 4 \mid 0 & 0 & 1 \end{bmatrix}$$

The Matrix Inversion Algorithm •00000 Properties of Inversion

The Matrix Inversion Algorithm

Example

Let
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$
. Find the inverse of A , if it exists.

Begin with a matrix obtained from A by **augmenting** A with the 3×3 identity matrix. We write this as

$$\begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 \mid 1 & 0 & 0 \\ 1 & -1 & 3 \mid 0 & 1 & 0 \\ 1 & 2 & 4 \mid 0 & 0 & 1 \end{bmatrix}$$

Then perform elementary row operations on this matrix until the **left** half of the matrix is transformed into I_3 .

The Matrix Inversion Algorithm 00000

Properties of Inversion

The Matrix Inversion Algorithm

$$\begin{bmatrix} 3 & 1 & 2 & | & 1 & 0 & 0 \\ 1 & -1 & 3 & 0 & 1 & 0 \\ 1 & 2 & 4 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & | & 0 & 1 & 0 \\ 3 & 1 & 2 & | & 1 & 0 & 0 \\ 1 & 2 & 4 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow$$

The Matrix Inversion Algorithm 00000

Properties of Inversion

The Matrix Inversion Algorithm

$$\begin{bmatrix} 3 & 1 & 2 & | & 1 & 0 & 0 \\ 1 & -1 & 3 & | & 0 & 1 & 0 \\ 1 & 2 & 4 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & | & 0 & 1 & 0 \\ 3 & 1 & 2 & | & 1 & 0 & 0 \\ 1 & 2 & 4 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & | & 0 & 1 & 0 \\ 0 & 4 & -7 & | & 1 & -3 & 0 \\ 0 & 3 & 1 & | & 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & | & 0 & 1 & 0 \\ 0 & 1 & -8 & | & 1 & -2 & -1 \\ 0 & 3 & 1 & | & 0 & -1 & 1 \end{bmatrix} \rightarrow$$

The Matrix Inversion Algorithm 00000

Properties of Inversion

The Matrix Inversion Algorithm

		[3 1 - 1	$ \begin{array}{cccc} 1 & 2 \\ -1 & 3 \\ 2 & 4 \end{array} $	2 1 3 0 4 0	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	$\Big] ightarrow$	$\begin{bmatrix} 1\\ 3\\ 1 \end{bmatrix}$	-1 1 2	3 2 4	0 1 0	1 0 0	0 0 1	\rightarrow	
$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$		-1 4 3	3 -7 1	$egin{array}{ccc} 0 & 1 \ 1 & -3 \ 0 & -1 \ \end{array}$	0 0 1	\rightarrow	[1 0 0	$egin{array}{c} -1 \ 1 \ 3 \end{array}$	3 8 1	0 1 0	_	1 -2 -1	$\begin{bmatrix} 0\\-1\\1\end{bmatrix}$	\rightarrow
「1 0 0	0 1 0	—5 —8 25	$\begin{vmatrix} 1\\ 1\\ -3 \end{vmatrix}$	-1 -2 5	$ -1 \\ -1 \\ 4 $	\rightarrow	[1 0 0	0 - 1 - 0	-5 -8 1	- <u>3</u>	1	-1 -2 $\frac{5}{25}$	-1^{-1} $-1^{\frac{4}{25}}$	\rightarrow

The Matrix Inversion Algorithm 00000

Properties of Inversion

The Matrix Inversion Algorithm

	[3 1 1	$\begin{array}{c} 1 \\ -1 \\ 2 \end{array}$	2 1 3 0 4 0	$egin{array}{cc} 0 & 0 \ 1 & 0 \ 0 & 1 \ \end{array}$	$\rightarrow \begin{bmatrix} 1\\ 3\\ 1 \end{bmatrix}$	-1 1 2	3 0 2 1 4 0	$ \begin{array}{ccc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} $	\rightarrow
$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	-1 4 3	3 -7 1	0 1 - 0 -	$ \begin{array}{ccc} 1 & 0 \\ 3 & 0 \\ 1 & 1 \end{array} $	$\rightarrow \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	-1 1 3	$ \begin{array}{c c} 3 & 0 \\ -8 & 1 \\ 1 & 0 \end{array} $	$1 \\ -2 \\ -1$	$egin{array}{c} 0 \ -1 \ 1 \end{bmatrix} ightarrow$
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	—5 —8 25	$\begin{vmatrix} 1 \\ 1 \\ -3 \end{vmatrix}$	-1 -2 5	$\begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix}$	$\rightarrow \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 – 1 – 0		$ \begin{array}{cccc} 1 & -1 \\ 1 & -2 \\ \frac{5}{5} & \frac{5}{25} \end{array} $	$\begin{bmatrix} -1 \\ -1 \\ \frac{4}{25} \end{bmatrix} \rightarrow$
			1 0 0	0 0 1 0 0 1	$ \begin{array}{r} \underline{10} \\ \underline{25} \\ \underline{1} \\ \underline{25} \\ -\underline{3} \\ \underline{25} \\ \underline{35} \\ \end{array} $	$0 - \frac{10}{25} - \frac{5}{25}$	$-\frac{5}{25}$ $\frac{7}{25}$ $\frac{4}{25}$		

The Matrix Inversion Algorithm

Properties of Inversion

The Matrix Inversion Algorithm

Example (continued)

We have successfully transformed the left-hand side of $[A \mid I]$ into I using elementary row operations, and thus

The Matrix Inversion Algorithm

Properties of Inversion

The Matrix Inversion Algorithm

Example (continued)

We have successfully transformed the left-hand side of $[A \mid I]$ into I using elementary row operations, and thus

$$\begin{bmatrix} A \mid I \end{bmatrix} \rightarrow \begin{bmatrix} I \mid A^{-1} \end{bmatrix}.$$

The Matrix Inversion Algorithm

Properties of Inversion

The Matrix Inversion Algorithm

Example (continued)

We have successfully transformed the left-hand side of $[A \mid I]$ into I using elementary row operations, and thus

$$[A \mid I] \rightarrow [I \mid A^{-1}].$$

Therefore, A^{-1} exists, and

$$A^{-1} = \begin{bmatrix} \frac{10}{25} & 0 & -\frac{5}{25} \\ \frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\ -\frac{3}{25} & \frac{5}{25} & \frac{4}{25} \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 10 & 0 & -5 \\ 1 & -10 & 7 \\ -3 & 5 & 4 \end{bmatrix}$$

The Matrix Inversion Algorithm

Properties of Inversion

The Matrix Inversion Algorithm

Example (continued)

We have successfully transformed the left-hand side of $[A \mid I]$ into I using elementary row operations, and thus

$$[A \mid I] \rightarrow [I \mid A^{-1}].$$

Therefore, A^{-1} exists, and

$$A^{-1} = \begin{bmatrix} \frac{10}{25} & 0 & -\frac{5}{25} \\ \frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\ -\frac{3}{25} & \frac{5}{25} & \frac{4}{25} \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 10 & 0 & -5 \\ 1 & -10 & 7 \\ -3 & 5 & 4 \end{bmatrix}$$

You can check your work by computing AA^{-1} and $A^{-1}A$.

The Matrix Inversion Algorithm

Properties of Inversion

Justification

- If A is invertible then Ax = b has a unique solution x = A⁻¹b for any b.
- Suppose $\mathbf{b} = \mathbf{e}_j = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^T$. Then $A^{-1}\mathbf{b}$ is the *j*th column of A^{-1} .
- We can also solve the equation $A\mathbf{x} = \mathbf{e}_j$ with Gaussian elimination: row reduce the augmented matrix $[A \mid \mathbf{e}_j]$.
- All of the row reduction steps depend only on A, so we can save time by doing them all at once, and using the augmented matrix $[A \mid I]$.

Properties of Inversion

Theorem (§2.4 Theorem 3)

Let A be an $n \times n$ matrix. If A can be transformed to I_n using elementary row operations, then A is invertible and the matrix inversion algorithm produces A^{-1} . Otherwise, A is not invertible.

Properties of Inversion

Example

Find, if possible, the inverse of

$$\begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$

_

_

_

Properties of Inversion

Example

Find, if possible, the inverse of
$$\begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$
.
Using the matrix inversion algorithm

$$\begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ -2 & 1 & 3 & | & 0 & 1 & 0 \\ -1 & 1 & 2 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 0 & 0 & | & -1 & -1 & 1 \end{bmatrix}$$

-

. –

Properties of Inversion

Example

Find, if possible, the inverse of
$$\begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$
.
Using the matrix inversion algorithm

$$\begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ -2 & 1 & 3 & | & 0 & 1 & 0 \\ -1 & 1 & 2 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 0 & 0 & | & -1 & -1 & 1 \end{bmatrix}$$

Since the reduced row echelon form doesn't have an identity matrix on the left, we see that A has no inverse.

The Matrix Inversion Algorithm 000000

Properties of Inversion •00000000

Cancellation Laws

Example (§2.4 Example 7)

Let A, B and C be matrices, and suppose that A is invertible.

The Matrix Inversion Algorithm 000000

Properties of Inversion •00000000

Cancellation Laws

Example (§2.4 Example 7)

Let A, B and C be matrices, and suppose that A is invertible. If AB = AC, then

$$A^{-1}(AB) = A^{-1}(AC)$$
$$(A^{-1}A)B = (A^{-1}A)B$$
$$IB = IC$$
$$B = C.$$

The Matrix Inversion Algorithm 000000

Properties of Inversion •00000000

Cancellation Laws

Example (§2.4 Example 7)

Let A, B and C be matrices, and suppose that A is invertible. If AB = AC, then

$$A^{-1}(AB) = A^{-1}(AC)$$

$$(A^{-1}A)B = (A^{-1}A)C$$

$$IB = IC$$

$$B = C.$$

2 If BA = CA, then

$$(BA)A^{-1} = (CA)A^{-1}$$
$$B(AA^{-1}) = C(AA^{-1})$$
$$BI = CI$$
$$B = C.$$

Properties of Inversion

Problem

Find matrices A, B and C for which AB = AC but $B \neq C$.

Properties of Inversion

Example ($\S2.4$ Examples 8 and 9)

Suppose A is an invertible matrix. Then

Properties of Inversion

Example ($\S2.4$ Examples 8 and 9)

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I,$$

Properties of Inversion

Example ($\S2.4$ Examples 8 and 9)

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I,$$

and

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I.$$

Properties of Inversion

Example ($\S2.4$ Examples 8 and 9)

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I,$$

and

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I.$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$.

Properties of Inversion

Example ($\S2.4$ Examples 8 and 9)

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I,$$

and

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I.$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$.

② Suppose A and B are invertible $n \times n$ matrices. Then

Properties of Inversion

Example ($\S2.4$ Examples 8 and 9)

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I,$$

and

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I.$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$.

2 Suppose A and B are invertible $n \times n$ matrices. Then

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I,$$

Properties of Inversion

Example ($\S2.4$ Examples 8 and 9)

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I,$$

and

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I.$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$.

② Suppose A and B are invertible $n \times n$ matrices. Then

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I,$$

and

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I.$$

Properties of Inversion

Example ($\S2.4$ Examples 8 and 9)

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I,$$

and

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I.$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$.

2 Suppose A and B are invertible $n \times n$ matrices. Then

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I,$$

and

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I.$$

This means that $(AB)^{-1} = B^{-1}A^{-1}$.

The Matrix Inversion Algorithm 000000

Properties of Inversion

Properties of Inverses

Theorem (§2.4 Theorem 4)

The Matrix Inversion Algorithm 000000

Properties of Inversion

Properties of Inverses

Theorem ($\S2.4$ Theorem 4)

Assume all matrices are $n \times n$.

• I is invertible, and $I^{-1} = I$.

The Matrix Inversion Algorithm 000000

Properties of Inversion

Properties of Inverses

Theorem ($\S2.4$ Theorem 4)

- I is invertible, and $I^{-1} = I$.
- 2 If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.

The Matrix Inversion Algorithm 000000

Properties of Inversion

Properties of Inverses

Theorem ($\S2.4$ Theorem 4)

- I is invertible, and $I^{-1} = I$.
- 2 If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.
- 3 If A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.

The Matrix Inversion Algorithm 000000

Properties of Inversion

Properties of Inverses

Theorem ($\S2.4$ Theorem 4)

- I is invertible, and $I^{-1} = I$.
- 2 If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.
- So If A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.
- If A_1, A_2, \dots, A_k are invertible, so is $A_1A_2 \cdots A_k$, and $(A_1A_2 \cdots A_k)^{-1} = A_k^{-1}A_{k-1}^{-1} \cdots A_2^{-1}A_1^{-1}$.

The Matrix Inversion Algorithm 000000

Properties of Inversion

Properties of Inverses

Theorem ($\S2.4$ Theorem 4)

- I is invertible, and $I^{-1} = I$.
- **2** If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.
- So If A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.
- If A_1, A_2, \dots, A_k are invertible, so is $A_1A_2 \cdots A_k$, and $(A_1A_2 \cdots A_k)^{-1} = A_k^{-1}A_{k-1}^{-1} \cdots A_2^{-1}A_1^{-1}$.
- **5** If A is invertible, so is A^k , and $(A^k)^{-1} = (A^{-1})^k$.

The Matrix Inversion Algorithm 000000

Properties of Inversion

Properties of Inverses

Theorem ($\S2.4$ Theorem 4)

- I is invertible, and $I^{-1} = I$.
- **2** If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.
- 3 If A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.
- If A_1, A_2, \dots, A_k are invertible, so is $A_1A_2 \cdots A_k$, and $(A_1A_2 \cdots A_k)^{-1} = A_k^{-1}A_{k-1}^{-1} \cdots A_2^{-1}A_1^{-1}$.
- **5** If A is invertible, so is A^k , and $(A^k)^{-1} = (A^{-1})^k$.
- If A is invertible and a ∈ R is nonzero, then aA is invertible, and (aA)⁻¹ = ¹/_aA⁻¹.

The Matrix Inversion Algorithm 000000

Properties of Inversion

Properties of Inverses

Theorem ($\S2.4$ Theorem 4)

- I is invertible, and $I^{-1} = I$.
- **2** If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.
- So If A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.
- If A_1, A_2, \dots, A_k are invertible, so is $A_1A_2 \cdots A_k$, and $(A_1A_2 \cdots A_k)^{-1} = A_k^{-1}A_{k-1}^{-1} \cdots A_2^{-1}A_1^{-1}$.
- **5** If A is invertible, so is A^k , and $(A^k)^{-1} = (A^{-1})^k$.
- If A is invertible and a ∈ R is nonzero, then aA is invertible, and (aA)⁻¹ = ¹/_aA⁻¹.
- If A is invertible, so is A^T , and $(A^T)^{-1} = (A^{-1})^T$.

Properties of Inversion

Example

True or false? If $A^3 = 4I$, then A is invertible.

Properties of Inversion

Example

True or false? If $A^3 = 4I$, then A is invertible.

If $A^3=4I,$ then $\frac{1}{4}A^3=I,$ so $(\frac{1}{4}A^2)A=I \text{ and } A(\frac{1}{4}A^2)=I.$

Properties of Inversion

Example

True or false? If $A^3 = 4I$, then A is invertible.

If $A^3=4I$, then $\frac{1}{4}A^3=I,$ so $(\frac{1}{4}A^2)A=I$ and $A(\frac{1}{4}A^2)=I.$

Therefore A is invertible, and $A^{-1} = \frac{1}{4}A^2$. True

Properties of Inversion

Example

True or false? If A and B are invertible, then A + B is invertible.

Properties of Inversion

Example

True or false? If A and B are invertible, then A + B is invertible.

Take A = I and B = -I. Both are invertible but A + B = 0 is not. False

Properties of Inversion

Theorem ($\S2.4$ Theorem 5)

Properties of Inversion

Theorem (\S 2.4 Theorem 5)

Let A be an $n \times n$ matrix; **x** and **b** are n-vectors (i.e., $n \times 1$ matrices). The following conditions are equivalent:

A is invertible.

Properties of Inversion

Theorem ($\S2.4$ Theorem 5)

- A is invertible.
- 2 $A\mathbf{x} = 0$ has only the trivial solution, $\mathbf{x} = 0$.

Properties of Inversion

Theorem ($\S2.4$ Theorem 5)

- A is invertible.
- 2 $A\mathbf{x} = 0$ has only the trivial solution, $\mathbf{x} = 0$.
- **③** A can be transformed to I_n by elementary row operations.

Theorem ($\S2.4$ Theorem 5)

- A is invertible.
- 2 $A\mathbf{x} = 0$ has only the trivial solution, $\mathbf{x} = 0$.
- **③** A can be transformed to I_n by elementary row operations.
- The system Ax = b has at least one solution x for any choice of b.

Theorem ($\S2.4$ Theorem 5)

- A is invertible.
- 2 $A\mathbf{x} = 0$ has only the trivial solution, $\mathbf{x} = 0$.
- **③** A can be transformed to I_n by elementary row operations.
- The system Ax = b has at least one solution x for any choice of b.
- There exists an $n \times n$ matrix C with the property that $AC = I_n$.

Theorem ($\S2.4$ Theorem 5)

Let A be an $n \times n$ matrix; **x** and **b** are n-vectors (i.e., $n \times 1$ matrices). The following conditions are equivalent:

- A is invertible.
- 2 $A\mathbf{x} = 0$ has only the trivial solution, $\mathbf{x} = 0$.
- **③** A can be transformed to I_n by elementary row operations.
- The system Ax = b has at least one solution x for any choice of b.
- There exists an $n \times n$ matrix C with the property that $AC = I_n$.

Corollary

If A and C are $n \times n$ matrices such that AC = I, then CA = I and $C = A^{-1}$, $A = C^{-1}$.

Properties of Inversion

In the Corollary, it is essential that the matrices be square.

Properties of Inversion

In the Corollary, it is essential that the matrices be square.

The Matrix Inversion Algorithm 000000

Properties of Inversion

Example

True or false? If A^2 is invertible, then A is invertible.

Properties of Inversion

Example

True or false? If A^2 is invertible, then A is invertible.

Suppose *B* is the inverse of A^2 . Then

 $A^2B = A(AB) = I$

Properties of Inversion

Example

True or false? If A^2 is invertible, then A is invertible.

Suppose *B* is the inverse of A^2 . Then

 $A^2B = A(AB) = I$

Therefore *AB* is the inverse of *A*. **True**

The Matrix Inversion Algorithm

Properties of Inversion 000000000

2 The Matrix Inversion Algorithm

Operation Properties of Inversion