Linear Methods (Math 211)
 Lecture 10 - §2.4

(with slides adapted from K. Seyffarth)

David Roe

September 30, 2013

Recall
(1) More Block Multiplication
(2) Matrix Inverses for 2×2 Matrices

Today

(1) Exam Announcements
(2) The Matrix Inversion Algorithm
(3) Properties of Inversion

Exam Information

- The first midterm will be held 7pm to 9pm on Tuesday, October 8 in ICT 102.
- If you have a conflict with this time you should notify me immediately by e-mail (roed.math@gmail.com).
- If you are sick and can't attend the exam, e-mail me before the exam.

Exam Regulations

- Calculators and other electronic devices are not permitted.
- You should bring your student ID or other form of identification.
- There will be a TA in the room available to answer questions.
- Obviously, collaboration and copying are not permitted.
- See the University Calendar (section G) for more details.

Exam Topics

§1.1 Solutions and Elementary Operations
§1.2 Gaussian Elimination
§1.3 Homogeneous Equations
§2.1 Matrix Addition, Scalar Multiplication, and Transposition
§2.2 Equations, Matrices, and Transformations
§2.3 Matrix Multiplication (no Block Multiplication or Directed Graphs)
§2.4 Matrix Inverses (up to but NOT including Inverses of Matrix Transformations)

Review Opportunities

- I will hold an hour-long, in-class review either Friday or Monday (class vote)
- Calgary SOS (student group) is running a review session 5pm-8pm on Friday, October 4 in ST 128. It costs $\$ 20$.
- There are two practice midterms posted on Blackboard. Solutions will be posted on Friday.
- Your lab this week is a good place to ask questions.
- You can also get help in continuous tutorial in MS 569
- I will have office hours Monday 12-2 in MS 452. I am permanently moving my Wednesday office hours to Friday, still 11-12.

The Matrix Inversion Algorithm

Example

Let $A=\left[\begin{array}{rrr}3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4\end{array}\right]$. Find the inverse of A, if it exists.

The Matrix Inversion Algorithm

Example

Let $A=\left[\begin{array}{rrr}3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4\end{array}\right]$. Find the inverse of A, if it exists.
Begin with a matrix obtained from A by augmenting A with the 3×3 identity matrix. We write this as

$$
[A \mid I]=\left[\begin{array}{rrr|rrr}
3 & 1 & 2 & 1 & 0 & 0 \\
1 & -1 & 3 & 0 & 1 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right]
$$

The Matrix Inversion Algorithm

Example

Let $A=\left[\begin{array}{rrr}3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4\end{array}\right]$. Find the inverse of A, if it exists.
Begin with a matrix obtained from A by augmenting A with the 3×3 identity matrix. We write this as

$$
[A|l|]=\left[\begin{array}{rrr|rrr}
3 & 1 & 2 & 1 & 0 & 0 \\
1 & -1 & 3 & 0 & 1 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right]
$$

Then perform elementary row operations on this matrix until the left half of the matrix is transformed into I_{3}.

The Matrix Inversion Algorithm

Example (continued)

$$
\left[\begin{array}{rrr|rrr}
3 & 1 & 2 & 1 & 0 & 0 \\
1 & -1 & 3 & 0 & 1 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
3 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow
$$

The Matrix Inversion Algorithm
Example (continued)

$$
\begin{gathered}
{\left[\begin{array}{rrr|rrr}
3 & 1 & 2 & 1 & 0 & 0 \\
1 & -1 & 3 & 0 & 1 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
3 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow} \\
{\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 4 & -7 & 1 & -3 & 0 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right] \rightarrow}
\end{gathered}
$$

The Matrix Inversion Algorithm
Example (continued)

$$
\begin{aligned}
{\left[\begin{array}{rrr|rrr}
3 & 1 & 2 & 1 & 0 & 0 \\
1 & -1 & 3 & 0 & 1 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
3 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow \\
{\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 4 & -7 & 1 & -3 & 0 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right] \rightarrow \\
{\left[\begin{array}{rrr|rrr}
1 & 0 & -5 & 1 & -1 & -1 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 0 & 25 & -3 & 5 & 4
\end{array}\right] } & \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -5 & 1 & -1 & -1 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 0 & 1 & -\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right] \rightarrow
\end{aligned}
$$

The Matrix Inversion Algorithm

Example (continued)

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
3 & 1 & 2 & 1 & 0 & 0 \\
1 & -1 & 3 & 0 & 1 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
3 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 4 & -7 & 1 & -3 & 0 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & -5 & 1 & -1 & -1 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 0 & 25 & -3 & 5 & 4
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -5 & 1 & -1 & -1 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 0 & 1 & -\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & \frac{10}{25} & 0 & -\frac{5}{25} \\
0 & 1 & 0 & \frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\
0 & 0 & 1 & -\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right]}
\end{aligned}
$$

The Matrix Inversion Algorithm

Example (continued)

We have successfully transformed the left-hand side of $[A \mid I]$ into I using elementary row operations, and thus

The Matrix Inversion Algorithm

Example (continued)

We have successfully transformed the left-hand side of $[A \mid I]$ into I using elementary row operations, and thus

$$
[A \mid I] \rightarrow\left[I \mid A^{-1}\right] .
$$

The Matrix Inversion Algorithm

Example (continued)

We have successfully transformed the left-hand side of $[A \mid I]$ into I using elementary row operations, and thus

$$
[A \mid I] \rightarrow\left[I \mid A^{-1}\right] .
$$

Therefore, A^{-1} exists, and

$$
A^{-1}=\left[\begin{array}{rrr}
\frac{10}{25} & 0 & -\frac{5}{25} \\
\frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\
-\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right]=\frac{1}{25}\left[\begin{array}{rrr}
10 & 0 & -5 \\
1 & -10 & 7 \\
-3 & 5 & 4
\end{array}\right]
$$

The Matrix Inversion Algorithm

Example (continued)

We have successfully transformed the left-hand side of $[A \mid I]$ into I using elementary row operations, and thus

$$
[A \mid I] \rightarrow\left[I \mid A^{-1}\right] .
$$

Therefore, A^{-1} exists, and

$$
A^{-1}=\left[\begin{array}{rrr}
\frac{10}{25} & 0 & -\frac{5}{25} \\
\frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\
-\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right]=\frac{1}{25}\left[\begin{array}{rrr}
10 & 0 & -5 \\
1 & -10 & 7 \\
-3 & 5 & 4
\end{array}\right]
$$

You can check your work by computing $A A^{-1}$ and $A^{-1} A$.

Justification

- If A is invertible then $A \mathbf{x}=\mathbf{b}$ has a unique solution $\mathbf{x}=A^{-1} \mathbf{b}$ for any \mathbf{b}.
- Suppose $\mathbf{b}=\mathbf{e}_{j}=\left[\begin{array}{lllllll}0 & \cdots & 0 & 1 & 0 & \cdots & 0\end{array}\right]^{T}$. Then $A^{-1} \mathbf{b}$ is the j th column of A^{-1}.
- We can also solve the equation $A \mathbf{x}=\mathbf{e}_{j}$ with Gaussian elimination: row reduce the augmented matrix $\left[A \mid \mathbf{e}_{j}\right]$.
- All of the row reduction steps depend only on A, so we can save time by doing them all at once, and using the augmented matrix $[A \mid I]$.

Theorem (§2.4 Theorem 3)

Let A be an $n \times n$ matrix. If A can be transformed to I_{n} using elementary row operations, then A is invertible and the matrix inversion algorithm produces A^{-1}. Otherwise, A is not invertible.

Example
Find, if possible, the inverse of $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right]$.

Example

Find, if possible, the inverse of $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right]$.
Using the matrix inversion algorithm

$$
\begin{aligned}
{\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
-2 & 1 & 3 & 0 & 1 & 0 \\
-1 & 1 & 2 & 0 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Example

Find, if possible, the inverse of $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right]$.
Using the matrix inversion algorithm

$$
\begin{aligned}
{\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
-2 & 1 & 3 & 0 & 1 & 0 \\
-1 & 1 & 2 & 0 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Since the reduced row echelon form doesn't have an identity matrix on the left, we see that A has no inverse.

Cancellation Laws

Example (§2.4 Example 7)

Let A, B and C be matrices, and suppose that A is invertible.

Cancellation Laws

Example (§2.4 Example 7)

Let A, B and C be matrices, and suppose that A is invertible.
(1) If $A B=A C$, then

$$
\begin{aligned}
A^{-1}(A B) & =A^{-1}(A C) \\
\left(A^{-1} A\right) B & =\left(A^{-1} A\right) C \\
I B & =I C \\
B & =C
\end{aligned}
$$

Cancellation Laws

Example (§2.4 Example 7)

Let A, B and C be matrices, and suppose that A is invertible.
(1) If $A B=A C$, then

$$
\begin{aligned}
A^{-1}(A B) & =A^{-1}(A C) \\
\left(A^{-1} A\right) B & =\left(A^{-1} A\right) C \\
I B & =I C \\
B & =C
\end{aligned}
$$

(2) If $B A=C A$, then

$$
\begin{aligned}
(B A) A^{-1} & =(C A) A^{-1} \\
B\left(A A^{-1}\right) & =C\left(A A^{-1}\right) \\
B I & =C I \\
B & =C .
\end{aligned}
$$

Find matrices A, B and C for which $A B=A C$ but $B \neq C$.

Example (§2.4 Examples 8 and 9)

(1) Suppose A is an invertible matrix. Then

Example ($\$ 2.4$ Examples 8 and 9)

(1) Suppose A is an invertible matrix. Then

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I,
$$

Example (§2.4 Examples 8 and 9)

(1) Suppose A is an invertible matrix. Then

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I
$$

and

$$
\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I .
$$

Example (§2.4 Examples 8 and 9)

(1) Suppose A is an invertible matrix. Then

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I
$$

and

$$
\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I .
$$

This means that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Example ($\$ 2.4$ Examples 8 and 9)

(1) Suppose A is an invertible matrix. Then

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I
$$

and

$$
\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I .
$$

This means that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
(2) Suppose A and B are invertible $n \times n$ matrices. Then

Example ($\$ 2.4$ Examples 8 and 9)

(1) Suppose A is an invertible matrix. Then

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I
$$

and

$$
\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I .
$$

This means that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
(2) Suppose A and B are invertible $n \times n$ matrices. Then

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I,
$$

Example ($\$ 2.4$ Examples 8 and 9)

(1) Suppose A is an invertible matrix. Then

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I
$$

and

$$
\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I .
$$

This means that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
(2) Suppose A and B are invertible $n \times n$ matrices. Then

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I,
$$

and

$$
\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=B^{-1} B=I
$$

Example ($\$ 2.4$ Examples 8 and 9)

(1) Suppose A is an invertible matrix. Then

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I
$$

and

$$
\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I .
$$

This means that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
(2) Suppose A and B are invertible $n \times n$ matrices. Then

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I,
$$

and

$$
\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=B^{-1} B=I
$$

This means that $(A B)^{-1}=B^{-1} A^{-1}$.

Properties of Inverses

Theorem (§2.4 Theorem 4)
 Assume all matrices are $n \times n$.

Properties of Inverses

Theorem (§2.4 Theorem 4)

Assume all matrices are $n \times n$.
(1) I is invertible, and $I^{-1}=I$.

Properties of Inverses

Theorem (§2.4 Theorem 4)
Assume all matrices are $n \times n$.
(1) I is invertible, and $I^{-1}=I$.
(2) If A is invertible, so is A^{-1}, and $\left(A^{-1}\right)^{-1}=A$.

Properties of Inverses

Theorem (§2.4 Theorem 4)

Assume all matrices are $n \times n$.
(1) I is invertible, and $I^{-1}=I$.
(2) If A is invertible, so is A^{-1}, and $\left(A^{-1}\right)^{-1}=A$.
(3) If A and B are invertible, so is $A B$, and $(A B)^{-1}=B^{-1} A^{-1}$.

Properties of Inverses

Theorem (§2.4 Theorem 4)

Assume all matrices are $n \times n$.
(1) I is invertible, and $I^{-1}=I$.
(2) If A is invertible, so is A^{-1}, and $\left(A^{-1}\right)^{-1}=A$.
(3) If A and B are invertible, so is $A B$, and $(A B)^{-1}=B^{-1} A^{-1}$.
(9) If $A_{1}, A_{2}, \ldots, A_{k}$ are invertible, so is $A_{1} A_{2} \cdots A_{k}$, and $\left(A_{1} A_{2} \cdots A_{k}\right)^{-1}=A_{k}^{-1} A_{k-1}^{-1} \cdots A_{2}^{-1} A_{1}^{-1}$.

Properties of Inverses

Theorem (§2.4 Theorem 4)

Assume all matrices are $n \times n$.
(1) I is invertible, and $I^{-1}=I$.
(2) If A is invertible, so is A^{-1}, and $\left(A^{-1}\right)^{-1}=A$.
(3) If A and B are invertible, so is $A B$, and $(A B)^{-1}=B^{-1} A^{-1}$.
(9) If $A_{1}, A_{2}, \ldots, A_{k}$ are invertible, so is $A_{1} A_{2} \cdots A_{k}$, and $\left(A_{1} A_{2} \cdots A_{k}\right)^{-1}=A_{k}^{-1} A_{k-1}^{-1} \cdots A_{2}^{-1} A_{1}^{-1}$.
(6) If A is invertible, so is A^{k}, and $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$.

Properties of Inverses

Theorem (§2.4 Theorem 4)

Assume all matrices are $n \times n$.
(1) I is invertible, and $I^{-1}=I$.
(2) If A is invertible, so is A^{-1}, and $\left(A^{-1}\right)^{-1}=A$.
(3) If A and B are invertible, so is $A B$, and $(A B)^{-1}=B^{-1} A^{-1}$.
(4) If $A_{1}, A_{2}, \ldots, A_{k}$ are invertible, so is $A_{1} A_{2} \cdots A_{k}$, and $\left(A_{1} A_{2} \cdots A_{k}\right)^{-1}=A_{k}^{-1} A_{k-1}^{-1} \cdots A_{2}^{-1} A_{1}^{-1}$.
(5) If A is invertible, so is A^{k}, and $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$.
(6) If A is invertible and $a \in \mathbb{R}$ is nonzero, then $a A$ is invertible, and $(a A)^{-1}=\frac{1}{a} A^{-1}$.

Properties of Inverses

Theorem (§2.4 Theorem 4)

Assume all matrices are $n \times n$.
(1) I is invertible, and $I^{-1}=I$.
(2) If A is invertible, so is A^{-1}, and $\left(A^{-1}\right)^{-1}=A$.
(3) If A and B are invertible, so is $A B$, and $(A B)^{-1}=B^{-1} A^{-1}$.
(4) If $A_{1}, A_{2}, \ldots, A_{k}$ are invertible, so is $A_{1} A_{2} \cdots A_{k}$, and $\left(A_{1} A_{2} \cdots A_{k}\right)^{-1}=A_{k}^{-1} A_{k-1}^{-1} \cdots A_{2}^{-1} A_{1}^{-1}$.
(5) If A is invertible, so is A^{k}, and $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$.
(c) If A is invertible and $a \in \mathbb{R}$ is nonzero, then $a A$ is invertible, and $(a A)^{-1}=\frac{1}{a} A^{-1}$.
(3) If A is invertible, so is A^{T}, and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Example

True or false? If $A^{3}=4 I$, then A is invertible.

Example

True or false? If $A^{3}=4 I$, then A is invertible.
If $A^{3}=4 /$, then

$$
\frac{1}{4} A^{3}=I
$$

SO

$$
\left(\frac{1}{4} A^{2}\right) A=I \text { and } A\left(\frac{1}{4} A^{2}\right)=I
$$

Example

True or false? If $A^{3}=4 I$, then A is invertible.
If $A^{3}=4 /$, then

$$
\frac{1}{4} A^{3}=l
$$

so

$$
\left(\frac{1}{4} A^{2}\right) A=I \text { and } A\left(\frac{1}{4} A^{2}\right)=I
$$

Therefore A is invertible, and $A^{-1}=\frac{1}{4} A^{2}$. True

Example

True or false? If A and B are invertible, then $A+B$ is invertible.

Example

True or false? If A and B are invertible, then $A+B$ is invertible.
Take $A=I$ and $B=-l$. Both are invertible but $A+B=0$ is not. False

Theorem (§2.4 Theorem 5)

Let A be an $n \times n$ matrix; \mathbf{x} and \mathbf{b} are n-vectors (i.e., $n \times 1$ matrices). The following conditions are equivalent:

Theorem (§2.4 Theorem 5)

Let A be an $n \times n$ matrix; \mathbf{x} and \mathbf{b} are n-vectors (i.e., $n \times 1$ matrices). The following conditions are equivalent:
(1) A is invertible.

Theorem (§2.4 Theorem 5)

Let A be an $n \times n$ matrix; \mathbf{x} and \mathbf{b} are n-vectors (i.e., $n \times 1$ matrices). The following conditions are equivalent:
(1) A is invertible.
(2) $A \mathbf{x}=0$ has only the trivial solution, $\mathbf{x}=0$.

Theorem (§2.4 Theorem 5)

Let A be an $n \times n$ matrix; \mathbf{x} and \mathbf{b} are n-vectors (i.e., $n \times 1$ matrices). The following conditions are equivalent:
(1) A is invertible.
(2) $A \mathbf{x}=0$ has only the trivial solution, $\mathbf{x}=0$.
(3) A can be transformed to I_{n} by elementary row operations.

Theorem (§2.4 Theorem 5)

Let A be an $n \times n$ matrix; \mathbf{x} and \mathbf{b} are n-vectors (i.e., $n \times 1$ matrices). The following conditions are equivalent:
(1) A is invertible.
(2) $A \mathbf{x}=0$ has only the trivial solution, $\mathbf{x}=0$.
(3) A can be transformed to I_{n} by elementary row operations.
(1) The system $A \mathbf{x}=\mathbf{b}$ has at least one solution \mathbf{x} for any choice of \mathbf{b}.

Theorem (§2.4 Theorem 5)

Let A be an $n \times n$ matrix; \mathbf{x} and \mathbf{b} are n-vectors (i.e., $n \times 1$ matrices). The following conditions are equivalent:
(1) A is invertible.
(2) $A \mathbf{x}=0$ has only the trivial solution, $\mathbf{x}=0$.
(3) A can be transformed to I_{n} by elementary row operations.
(9) The system $A \mathbf{x}=\mathbf{b}$ has at least one solution \mathbf{x} for any choice of \mathbf{b}.
(6) There exists an $n \times n$ matrix C with the property that $A C=I_{n}$.

Theorem (§2.4 Theorem 5)

Let A be an $n \times n$ matrix; \mathbf{x} and \mathbf{b} are n-vectors (i.e., $n \times 1$ matrices). The following conditions are equivalent:
(1) A is invertible.
(2) $A \mathbf{x}=0$ has only the trivial solution, $\mathbf{x}=0$.
(3) A can be transformed to I_{n} by elementary row operations.
(9) The system $A \mathbf{x}=\mathbf{b}$ has at least one solution \mathbf{x} for any choice of \mathbf{b}.
(6) There exists an $n \times n$ matrix C with the property that $A C=I_{n}$.

Corollary

If A and C are $n \times n$ matrices such that $A C=I$, then $C A=I$ and $C=A^{-1}, A=C^{-1}$.

In the Corollary, it is essential that the matrices be square.

In the Corollary, it is essential that the matrices be square.

Example

Let

$$
\begin{array}{cc}
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right] \text { and } C=\left[\begin{array}{rr}
-1 & 1 \\
1 & -1 \\
0 & 1
\end{array}\right] . \\
A C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad C A=\left[\begin{array}{rrr}
0 & -1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
\end{array}
$$

Example

True or false? If A^{2} is invertible, then A is invertible.

Example

True or false? If A^{2} is invertible, then A is invertible.
Suppose B is the inverse of A^{2}. Then

$$
A^{2} B=A(A B)=1
$$

Example

True or false? If A^{2} is invertible, then A is invertible.
Suppose B is the inverse of A^{2}. Then

$$
A^{2} B=A(A B)=1
$$

Therefore $A B$ is the inverse of A. True

Summary

(1) Exam Announcements
(2) The Matrix Inversion Algorithm
(3) Properties of Inversion

