Linear Methods (Math 211) Lecture $9-\S 2.3$ \& 2.4

(with slides adapted from K. Seyffarth)

David Roe

September 25, 2013

Recall
(1) Properties of Matrix Multiplication
(2) Block Multiplication

Today

(1) More Block Multiplication
(2) Matrix Inverses

Compatibility of Blocks

A division of A and B into blocks is compatible if

- The number of block columns of A is equal to the number of block rows of B,
- The width of each block column of A is the same as the height of the corresponding block row of B.

Strassen multiplication

Suppose A and B are large $2 n \times 2 n$ matrices. Divide each into $n \times n$ blocks:

$$
\begin{aligned}
& {\left[\begin{array}{l|l}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right] \cdot\left[\begin{array}{l|l}
B_{11} & B_{12} \\
\hline B_{21} & B_{22}
\end{array}\right] } \\
&=\left[\begin{array}{ll|l}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
\hline A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]
\end{aligned}
$$

Suppose multiplying $2 n \times 2 n$ matrices takes $2(2 n)^{3}=16 n^{3}$ operations. We've replaced this with eight multiplications, each taking $2 n^{3}$ operations. No benefit!

Strassen multiplication

Define

$$
\begin{array}{ll}
M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) & M_{2}=\left(A_{21}+A_{22}\right) B_{11} \\
M_{3}=A_{11}\left(B_{12}-B_{22}\right) & M_{4}=A_{22}\left(B_{21}-B_{11}\right) \\
M_{5}=\left(A_{11}+A_{12}\right) B_{22} & M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) \\
M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) &
\end{array}
$$

Then

$$
A \cdot B=\left[\begin{array}{c|c}
M_{1}+M_{4}-M_{5}+M_{7} & M_{3}+M_{5} \\
\hline M_{2}+M_{4} & M_{1}-M_{2}+M_{3}+M_{6}
\end{array}\right]
$$

We've replaced 8 multiplications and 4 additions with 7 multiplications and 18 additions. Even better, we can recurse, and use the same technique to multiply the $n \times n$ blocks. The resulting algorithm takes about $n^{2.807}$ operations.

Matix Inverses

Definition

Let A be an $n \times n$ matrix. Then B is an inverse of A if and only if $A B=I_{n}$ and $B A=I_{n}$.

Since A and I_{n} are both $n \times n, B$ must also be an $n \times n$ matrix.

Matix Inverses

Definition

Let A be an $n \times n$ matrix. Then B is an inverse of A if and only if $A B=I_{n}$ and $B A=I_{n}$.

Since A and I_{n} are both $n \times n, B$ must also be an $n \times n$ matrix.

Example

$$
\begin{gathered}
\text { Let } A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right] . \text { Then } \\
A B=?
\end{gathered}
$$

and

$$
B A=?
$$

Matix Inverses

Definition

Let A be an $n \times n$ matrix. Then B is an inverse of A if and only if $A B=I_{n}$ and $B A=I_{n}$.

Since A and I_{n} are both $n \times n, B$ must also be an $n \times n$ matrix.

Example

$$
\begin{array}{r}
\text { Let } A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right] . \text { Then } \\
A B=I_{2}
\end{array}
$$

and

$$
B A=I_{2}
$$

so B is an inverse of A.

Not every square matrix has an inverse.

Not every square matrix has an inverse.

Example

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

has no inverse.

Not every square matrix has an inverse.

Example

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

has no inverse.

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & a+b \\
0 & c+d
\end{array}\right] \neq\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Theorem (§2.4 Theorem 1)
If B and C are inverses of A, then $B=C$.
i.e., if a matrix has an inverse, the inverse is unique.

Theorem (§2.4 Theorem 1)
If B and C are inverses of A, then $B=C$.
i.e., if a matrix has an inverse, the inverse is unique.

Proof.

We have

$$
B=B I=B(A C)=(B A) C=I C=C .
$$

Let A be a square matrix, i.e., an $n \times n$ matrix.

- The inverse of A, if it exists, is denoted A^{-1}, and

$$
A A^{-1}=I=A^{-1} A .
$$

- If A has an inverse, then we say that A is invertible.

The inverse of a 2×2 matrix

Example (§2.4 Example 4)
Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A is invertible if and only if

$$
a d-b c \neq 0 .
$$

The inverse of a 2×2 matrix

Example (§2.4 Example 4)
Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A is invertible if and only if

$$
a d-b c \neq 0 .
$$

If $a d-b c \neq 0$, then there is a formula for A^{-1} :

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

The inverse of a 2×2 matrix

Example (§2.4 Example 4)
Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A is invertible if and only if

$$
a d-b c \neq 0 .
$$

If $a d-b c \neq 0$, then there is a formula for A^{-1} :

$$
\begin{gathered}
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] . \\
{\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \cdot\left[\begin{array}{lr}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{rr}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right]}
\end{gathered}
$$

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

- $a d-b c$ is the determinant of A, and is $\operatorname{denoted} \operatorname{det} A$.
- $\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ is the adjugate of A, and is denoted $\operatorname{adj} A$.

We will eventually generalize both to $n \times n$ matrices.

Systems of Linear Equations and Inverses

Suppose that a system of n linear equations in n variables is written in matrix form as $A \mathbf{x}=\mathbf{b}$, and suppose that A is invertible.

Example

The system of linear equations

$$
\begin{array}{r}
2 x-7 y=3 \\
5 x-18 y=8
\end{array}
$$

can be written in matrix form as $A \mathbf{x}=\mathbf{b}$:

$$
\left[\begin{array}{rr}
2 & -7 \\
5 & -18
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
8
\end{array}\right]
$$

Here A is invertible....

Systems of Linear Equations and Inverses

Suppose that a system of n linear equations in n variables is written in matrix form as $A \mathbf{x}=\mathbf{b}$, and suppose that A is invertible.

Example

The system of linear equations

$$
\begin{array}{r}
2 x-7 y=3 \\
5 x-18 y=8
\end{array}
$$

can be written in matrix form as $A \mathbf{x}=\mathbf{b}$:

$$
\left[\begin{array}{rr}
2 & -7 \\
5 & -18
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
8
\end{array}\right]
$$

Here A is invertible since $2(-18)-5(-7)=-1 \neq 0$.

Since A is invertible, A^{-1} exists and has the property that $A A^{-1}=I=A^{-1} A$, and thus

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
A^{-1}(A \mathbf{x}) & =A^{-1} \mathbf{b} \\
\left(A^{-1} A\right) \mathbf{x} & =A^{-1} \mathbf{b} \\
\mid \mathbf{x} & =A^{-1} \mathbf{b} \\
\mathbf{x} & =A^{-1} \mathbf{b}
\end{aligned}
$$

Since A is invertible, A^{-1} exists and has the property that $A A^{-1}=I=A^{-1} A$, and thus

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
A^{-1}(A \mathbf{x}) & =A^{-1} \mathbf{b} \\
\left(A^{-1} A\right) \mathbf{x} & =A^{-1} \mathbf{b} \\
I \mathbf{x} & =A^{-1} \mathbf{b} \\
\mathbf{x} & =A^{-1} \mathbf{b}
\end{aligned}
$$

i.e., $A \mathbf{x}=\mathbf{b}$ has the unique solution given by

$$
\mathbf{x}=A^{-1} \mathbf{b}
$$

Example (continued)

Recall that we have the system $A \mathbf{x}=\mathbf{b}$:

$$
\left[\begin{array}{rr}
2 & -7 \\
5 & -18
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
8
\end{array}\right] .
$$

- $\operatorname{det} A=$
- $\operatorname{adj} A=[\square$
- $A^{-1}=$

Example (continued)

Recall that we have the system $A \mathbf{x}=\mathbf{b}$:

$$
\left[\begin{array}{rr}
2 & -7 \\
5 & -18
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
8
\end{array}\right] .
$$

- $\operatorname{det} A=-1$
- adj $A=\left[\begin{array}{rr}-18 & 7 \\ -5 & 2\end{array}\right]$
- $A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A=\left[\begin{array}{cc}18 & -7 \\ 5 & -2\end{array}\right]$.
- Therefore,

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{cc}
18 & -7 \\
5 & -2
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
8
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

If A is a 2×2 matrix, then it is easy to determine if A is invertible: compute $\operatorname{det} A$.

If $\operatorname{det} A \neq 0$, find $\operatorname{adj} A$; then

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A
$$

If A is a 2×2 matrix, then it is easy to determine if A is invertible: compute $\operatorname{det} A$.

If $\operatorname{det} A \neq 0$, find $\operatorname{adj} A$; then

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A .
$$

Problem

Suppose that A is a 3×3 matrix, or, more generally, an $n \times n$ matrix where $n \geq 3$.

- How do we know whether or not A^{-1} exists?
- If A^{-1} exists, how do we find it?

If A is a 2×2 matrix, then it is easy to determine if A is invertible: compute $\operatorname{det} A$.

If $\operatorname{det} A \neq 0$, find $\operatorname{adj} A$; then

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A .
$$

Problem

Suppose that A is a 3×3 matrix, or, more generally, an $n \times n$ matrix where $n \geq 3$.

- How do we know whether or not A^{-1} exists?
- If A^{-1} exists, how do we find it?

Answer: the matrix inversion algorithm.

Summary

(1) More Block Multiplication
(2) Matrix Inverses

