Linear Methods (Math 211) Lecture 8 - §2.3

(with slides adapted from K. Seyffarth)

David Roe

September 25, 2013
(1) Matrix Transformations
(2) Matrix Multiplication
(3) Commutativity of Matrix Multiplication

Today

(1) Properties of Matrix Multiplication
(2) Block Multiplication

Theorem (§2.3 Theorem 3)

Let A, B, and C be matrices of appropriate sizes, and let $k \in \mathbb{R}$ be a scalar.
(1) $I A=A$ and $A I=A$ where I is an identity matrix.

Theorem (§2.3 Theorem 3)

Let A, B, and C be matrices of appropriate sizes, and let $k \in \mathbb{R}$ be a scalar.
(1) $I A=A$ and $A I=A$ where I is an identity matrix.
(2) $A(B C)=(A B) C$ (associative property)

Theorem (§2.3 Theorem 3)

Let A, B, and C be matrices of appropriate sizes, and let $k \in \mathbb{R}$ be a scalar.
(1) $I A=A$ and $A I=A$ where I is an identity matrix.
(2) $A(B C)=(A B) C$ (associative property)
(3) $A(B+C)=A B+A C$ (distributive property)

Theorem (§2.3 Theorem 3)

Let A, B, and C be matrices of appropriate sizes, and let $k \in \mathbb{R}$ be a scalar.
(1) $I A=A$ and $A I=A$ where I is an identity matrix.
(2) $A(B C)=(A B) C$ (associative property)
(3) $A(B+C)=A B+A C$ (distributive property)
(9) $(B+C) A=B A+C A$ (distributive property)

Theorem (§2.3 Theorem 3)

Let A, B, and C be matrices of appropriate sizes, and let $k \in \mathbb{R}$ be a scalar.
(1) $I A=A$ and $A I=A$ where I is an identity matrix.
(2) $A(B C)=(A B) C$ (associative property)
(3) $A(B+C)=A B+A C$ (distributive property)
(9) $(B+C) A=B A+C A$ (distributive property)
(5) $k(A B)=(k A) B=A(k B)$

Theorem (§2.3 Theorem 3)

Let A, B, and C be matrices of appropriate sizes, and let $k \in \mathbb{R}$ be a scalar.
(1) $I A=A$ and $A I=A$ where I is an identity matrix.
(2) $A(B C)=(A B) C$ (associative property)
(3) $A(B+C)=A B+A C$ (distributive property)
(9) $(B+C) A=B A+C A$ (distributive property)
(6) $k(A B)=(k A) B=A(k B)$
(6) $(A B)^{T}=B^{T} A^{T}$

Example (§2.3 Example 7)

Simplify the expression $A(B C-C D)+A(C-B) D-A B(C-D)$

Example (§2.3 Example 7)

Simplify the expression $A(B C-C D)+A(C-B) D-A B(C-D)$

$$
\begin{aligned}
A(B C & -C D)+A(C-B) D-A B(C-D) \\
& =A(B C)-A(C D)+(A C-A B) D-(A B) C+(A B) D \\
& =A B C-A C D+A C D-A B D-A B C+A B D \\
& =0
\end{aligned}
$$

Scalar Matrices

A matrix of the form $a l_{n}$ is called a scalar matrix:

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right],\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right] .
$$

Scalar matrices commute with any $n \times n$ matrix B :

$$
\left(a I_{n}\right) B=a B=B\left(a I_{n}\right) .
$$

For example,

$$
\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{rr}
5 & 10 \\
15 & 20
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]
$$

Diagonal Matrices

More generally, a diagonal matrix is a matrix where the only nonzero entries are on the diagonal:

$$
\left[\begin{array}{rrr}
3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]
$$

The product of two diagonal matrices is another diagonal matrix. Diagonal matrices commute with each other, but generally not other matrices.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right] \cdot\left[\begin{array}{ll}
7 & 0 \\
0 & 3
\end{array}\right]=\left[\begin{array}{rr}
14 & 0 \\
0 & 15
\end{array}\right]=\left[\begin{array}{rr}
14 & 0 \\
0 & 15
\end{array}\right]=\left[\begin{array}{ll}
7 & 0 \\
0 & 3
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right]} \\
& {\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
2 & 4 \\
15 & 20
\end{array}\right] \neq\left[\begin{array}{ll}
2 & 10 \\
6 & 20
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right]}
\end{aligned}
$$

Elementary Proofs

Example

Let A and B be $m \times n$ matrices, and let C be an $n \times k$ matrix. Prove that if A and B commute with C, then $A+B$ commutes with C.

Elementary Proofs

Example

Let A and B be $m \times n$ matrices, and let C be an $n \times k$ matrix. Prove that if A and B commute with C, then $A+B$ commutes with C.

Proof.

We are given that $A C=C A$ and $B C=C B$. Consider $(A+B) C$.

$$
\begin{aligned}
(A+B) C & =A C+B C \\
& =C A+C B \\
& =C(A+B)
\end{aligned}
$$

Since $(A+B) C=C(A+B), A+B$ commutes with C.

Elementary Proofs 2

Example

If A and B are symmetric, show that $A B$ is symmetric if and only if $A B=B A$

Elementary Proofs 2

Example

If A and B are symmetric, show that $A B$ is symmetric if and only if $A B=B A$

Proof.

Suppose $A B$ is symmetric. Then

$$
A B=(A B)^{T}=B^{T} A^{T}=B A
$$

Conversely, if $A B=B A$ then

$$
(A B)^{T}=B^{T} A^{T}=B A=A B
$$

so $A B$ is symmetric.

Block Multiplication

Example

Let A be an $m \times n$ matrix. Let B be an $n \times k$ matrix with columns $B_{1}, B_{2}, \ldots, B_{k}$, i.e., $B=\left[\begin{array}{llll}B_{1} & B_{2} & \cdots & B_{k}\end{array}\right]$. This represents a partition of B into blocks - in this example, the blocks are the columns of B. We can now write

$$
\begin{aligned}
A B & =A\left[\begin{array}{llll}
B_{1} & B_{2} & \cdots & B_{k}
\end{array}\right] \\
& =\left[\begin{array}{llll}
A B_{1} & A B_{2} & \cdots & A B_{k}
\end{array}\right]
\end{aligned}
$$

Here, the columns of $A B$, namely $A B_{1}, A B_{2}, \ldots, A B_{k}$, can be thought of as blocks of $A B$.

Block Multiplication

Example

Let A be an $m \times n$ matrix. Let B be an $n \times k$ matrix with columns $B_{1}, B_{2}, \ldots, B_{k}$, i.e., $B=\left[\begin{array}{llll}B_{1} & B_{2} & \cdots & B_{k}\end{array}\right]$. This represents a partition of B into blocks - in this example, the blocks are the columns of B. We can now write

$$
\begin{aligned}
A B & =A\left[\begin{array}{llll}
B_{1} & B_{2} & \cdots & B_{k}
\end{array}\right] \\
& =\left[\begin{array}{llll}
A B_{1} & A B_{2} & \cdots & A B_{k}
\end{array}\right]
\end{aligned}
$$

Here, the columns of $A B$, namely $A B_{1}, A B_{2}, \ldots, A B_{k}$, can be thought of as blocks of $A B$.

If A is an $m \times n$ matrix and B is an $n \times k$ matrix, and if A and B are partitioned compatibly into blocks in some way, then the computation of the product $A B$ may be simplified.

Example

$$
A=\left[\begin{array}{rrrr}
2 & -1 & 3 & 1 \\
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad B=\left[\begin{array}{rrr}
1 & 2 & 0 \\
-1 & 0 & 0 \\
0 & 5 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

Example

$$
A=\left[\begin{array}{rr|rr}
2 & -1 & 3 & 1 \\
1 & 0 & 1 & 2 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad B=\left[\begin{array}{rrr}
1 & 2 & 0 \\
-1 & 0 & 0 \\
0 & 5 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

Example

$$
A=\left[\begin{array}{rr|rr}
2 & -1 & 3 & 1 \\
1 & 0 & 1 & 2 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad B=\left[\begin{array}{rrr}
1 & 2 & 0 \\
-1 & 0 & 0 \\
\hline 0 & 5 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

Example

$$
A=\left[\begin{array}{rr|rr}
2 & -1 & 3 & 1 \\
1 & 0 & 1 & 2 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad B=\left[\begin{array}{rr|r}
1 & 2 & 0 \\
-1 & 0 & 0 \\
\hline 0 & 5 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

Example (continued)

Let

$$
A=\left[\begin{array}{rr|rr}
2 & -1 & 3 & 1 \\
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & I_{2}
\end{array}\right]
$$

and let

$$
B=\left[\begin{array}{rr|r}
1 & 2 & 0 \\
-1 & 0 & 0 \\
0 & 5 & 1 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right] .
$$

Example (continued)

Let

$$
A=\left[\begin{array}{rr|rr}
2 & -1 & 3 & 1 \\
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & I_{2}
\end{array}\right]
$$

and let

$$
B=\left[\begin{array}{rr|r}
1 & 2 & 0 \\
-1 & 0 & 0 \\
0 & 5 & 1 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right]
$$

Then

$$
A B=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & I_{2}
\end{array}\right]\left[\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right]
$$

Example (continued)

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & I_{2}
\end{array}\right]\left[\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{1} \cdot B_{1}+A_{2} \cdot B_{2} & A_{1} \cdot 0+A_{2} \cdot B_{3} \\
0 \cdot B_{1}+I_{2} \cdot B_{2} & 0 \cdot 0+I_{3} \cdot B_{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{1} B_{1}+A_{2} B_{2} & A_{2} B_{3} \\
B_{2} & B_{3}
\end{array}\right]
\end{aligned}
$$

Example (continued)

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & I_{2}
\end{array}\right]\left[\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{1} \cdot B_{1}+A_{2} \cdot B_{2} & A_{1} \cdot 0+A_{2} \cdot B_{3} \\
0 \cdot B_{1}+I_{2} \cdot B_{2} & 0 \cdot 0+I_{3} \cdot B_{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{1} B_{1}+A_{2} B_{2} & A_{2} B_{3} \\
B_{2} & B_{3}
\end{array}\right]
\end{aligned}
$$

Recall that

$$
A=\left[\begin{array}{rr|rr}
2 & -1 & 3 & 1 \\
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & I_{2}
\end{array}\right], B=\left[\begin{array}{rr|r}
1 & 2 & 0 \\
-1 & 0 & 0 \\
0 & 5 & 1 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{ll}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right] .
$$

Example (continued)

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & I_{2}
\end{array}\right]\left[\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{1} \cdot B_{1}+A_{2} \cdot B_{2} & A_{1} \cdot 0+A_{2} \cdot B_{3} \\
0 \cdot B_{1}+I_{2} \cdot B_{2} & 0 \cdot 0+I_{3} \cdot B_{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{1} B_{1}+A_{2} B_{2} & A_{2} B_{3} \\
B_{2} & B_{3}
\end{array}\right]
\end{aligned}
$$

Recall that

$$
A=\left[\begin{array}{rr|rr}
2 & -1 & 3 & 1 \\
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & I_{2}
\end{array}\right], B=\left[\begin{array}{rr|r}
1 & 2 & 0 \\
-1 & 0 & 0 \\
0 & 5 & 1 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{ll}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right] .
$$

Now compute $A_{1} B_{1}, A_{2} B_{2}$ and $A_{2} B_{3}$.

Example (continued)

$$
A_{1} B_{1}=\left[\begin{array}{rr}
2 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right]
$$

Example (continued)

$$
\begin{aligned}
& A_{1} B_{1}=\left[\begin{array}{rr}
2 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right] \\
& A_{2} B_{2}=\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{rr}
0 & 5 \\
1 & -1
\end{array}\right]=\left[\begin{array}{rr}
1 & 14 \\
2 & 3
\end{array}\right]
\end{aligned}
$$

Example (continued)

$$
\begin{gathered}
A_{1} B_{1}=\left[\begin{array}{rr}
2 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right] \\
A_{2} B_{2}=\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{rr}
0 & 5 \\
1 & -1
\end{array}\right]=\left[\begin{array}{rr}
1 & 14 \\
2 & 3
\end{array}\right] \\
A_{2} B_{3}=\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
\end{gathered}
$$

Example (continued)

$$
\begin{gathered}
A_{1} B_{1}=\left[\begin{array}{rr}
2 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right] \\
A_{2} B_{2}=\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{rr}
0 & 5 \\
1 & -1
\end{array}\right]=\left[\begin{array}{rr}
1 & 14 \\
2 & 3
\end{array}\right] \\
A_{2} B_{3}=\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
\end{gathered}
$$

Now,

$$
A B=\left[\begin{array}{cc}
A_{1} B_{1}+A_{2} B_{2} & A_{2} B_{3} \\
B_{2} & B_{3}
\end{array}\right]=\left[\begin{array}{rr|r}
4 & 18 & 3 \\
3 & 5 & 1 \\
0 & 5 & 1 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{rrr}
4 & 18 & 3 \\
3 & 5 & 1 \\
0 & 5 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

