Linear Methods (Math 211) - Lecture 6, §2.2

(with slides adapted from K. Seyffarth)

David Roe

September 20, 2013

Recall
(1) Vectors
(2) The Matrix-Vector Product
(3) The Dot Product

Today

(1) Associated Homogeneous Systems
(2) Matrix Transformations

Given a linear system $A \mathbf{x}=\mathbf{b}$, the system $A \mathbf{x}=\mathbf{0}$ is called the associated homogeneous system.

Theorem (§2.2 Theorem 3)

Suppose that \mathbf{x}_{1} is a particular solution to the system of linear equations $A \mathbf{x}=\mathbf{b}$.

- If \mathbf{x}_{0} is a solution to the associated homogeneous system then $\mathbf{x}_{1}+\mathbf{x}_{0}$ is another solution to $A \mathbf{x}=\mathbf{b}$.
- Every solution to $\mathbf{A x}=\mathbf{b}$ has the form $\mathbf{x}_{1}+\mathbf{x}_{0}$ for some solution \mathbf{x}_{0} to the associated homogeneous system.

Namely, we can go back and forth between solutions to $A \mathbf{x}=\mathbf{b}$ and solutions to $A \mathbf{x}=0$ by adding or subtracting some solution x_{1}.

Example

The system of linear equations $A \mathbf{x}=\mathbf{b}$, with

$$
A=\left[\begin{array}{rrrr}
2 & 1 & 3 & 3 \\
0 & 1 & -1 & 1 \\
-1 & 1 & -3 & 0
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

has solution

$$
\mathbf{x}=\left[\begin{array}{l}
1-2 s-t \\
2+s-t \\
s \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{r}
-2 \\
1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{r}
-1 \\
-1 \\
0 \\
1
\end{array}\right], \quad s, t \in \mathbb{R} .
$$

Example (continued)

Furthermore, $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right]$ is a particular solution to $A \mathbf{x}=\mathbf{b}$
(obtained by setting $s=t=0$), while

$$
\mathbf{x}_{0}=s\left[\begin{array}{r}
-2 \\
1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{r}
-1 \\
-1 \\
0 \\
1
\end{array}\right], \quad s, t \in \mathbb{R}
$$

is the general solution, in parametric form, to the associated homogeneous system $A \mathbf{x}=\mathbf{0}$.

Example 7 (p. 48) is similar.

Matrix Transformations

Examples

- In \mathbb{R}^{2}, reflection in the x-axis transforms $\left[\begin{array}{l}a \\ b\end{array}\right]$ to $\left[\begin{array}{r}a \\ -b\end{array}\right]$.
- In \mathbb{R}^{2}, reflection in the y-axis transforms $\left[\begin{array}{l}a \\ b\end{array}\right]$ to $\left[\begin{array}{r}-a \\ b\end{array}\right]$.

A transformation from \mathbb{R}^{n} to \mathbb{R}^{m} (also called just a transformation or function) is a rule assigning a vector in \mathbb{R}^{m} to each vector in \mathbb{R}^{n}. We write

$$
\begin{gathered}
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { or } \\
\quad \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m} .
\end{gathered}
$$

If $m=n$, then we say T is a transformation of \mathbb{R}^{n}.

Specifying a transformation symbolically

$$
\begin{aligned}
& \text { Example } \\
& T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4} \text { defined by } \\
& \qquad T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]
\end{aligned}
$$

is a transformation.

Specifying a transformation pictorially

Reflection in the x-axis: $\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{r}a \\ -b\end{array}\right]$.

Specifying a transformation pictorially

Specifying a transformation pictorially

Rotation by $\frac{\pi}{2}:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{r}-b \\ a\end{array}\right]$.

Specifying a transformation pictorially

Expansion by a factor of $2:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}2 a \\ 2 b\end{array}\right]$.

Specifying a transformation pictorially

Compression by a factor of 2: $\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}a / 2 \\ b / 2\end{array}\right]$.

Specifying a transformation pictorially

$$
\text { x-expansion: }\left[\begin{array}{l}
a \\
b
\end{array}\right] \mapsto\left[\begin{array}{r}
2 a \\
b
\end{array}\right] \text {. }
$$

Specifying a transformation pictorially

$$
x \text {-contraction: }\left[\begin{array}{l}
a \\
b
\end{array}\right] \mapsto\left[\begin{array}{r}
a / 2 \\
b
\end{array}\right]
$$

Specifying a transformation pictorially

Specifying a transformation pictorially

Negative x-shear: $\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{c}a-b / 2 \\ b\end{array}\right]$.

Linear Transformations

To specify a transformation pictorially, we need to know that that the whole picture extends what we can see. It suffices to know that the transformation is linear:
(1) $T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$,
(2) $T(k \mathbf{x})=k T(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{n}$ and $k \in \mathbb{R}$.

We will return to this notion in §2.6.

Matrix Transformation

Let A be an $m \times n$ matrix. The transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by

$$
T(\mathbf{x})=A \mathbf{x} \text { for each } \mathbf{x} \in \mathbb{R}^{n}
$$

is called the matrix transformation induced by A.

Matrix Transformation

Let A be an $m \times n$ matrix. The transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by

$$
T(\mathbf{x})=A \mathbf{x} \text { for each } \mathbf{x} \in \mathbb{R}^{n}
$$

is called the matrix transformation induced by A.

Example

In \mathbb{R}^{2}, reflection in the x-axis, which transforms $\left[\begin{array}{l}a \\ b\end{array}\right]$ to $\left[\begin{array}{r}a \\ -b\end{array}\right]$, is a matrix transformation because

$$
\left[\begin{array}{r}
a \\
-b
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Matrix Transformation

Let A be an $m \times n$ matrix. The transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by

$$
T(\mathbf{x})=A \mathbf{x} \text { for each } \mathbf{x} \in \mathbb{R}^{n}
$$

is called the matrix transformation induced by A.

Example

In \mathbb{R}^{2}, reflection in the x-axis, which transforms $\left[\begin{array}{l}a \\ b\end{array}\right]$ to $\left[\begin{array}{r}a \\ -b\end{array}\right]$, is a matrix transformation because

$$
\left[\begin{array}{r}
a \\
-b
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Preview: linear transformations and matrix transformations are the same class of transformations.

Example

The transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by

$$
T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]
$$

is a matrix transformation.

Example

The transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by

$$
T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]
$$

is a matrix transformation.
T is induced by the matrix

$$
A=\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

Definition (Equality of Transformations)

Suppose $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are transformations. Then $S=T$ if and only if $S(\mathbf{x})=T(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^{n}$.

Summary

(1) Associated Homogeneous Systems
(2) Matrix Transformations

