Recall

1. Vectors
2. The Matrix-Vector Product
3. The Dot Product
Today

1. Associated Homogeneous Systems

2. Matrix Transformations
Given a linear system \(Ax = b \), the system \(Ax = 0 \) is called the associated homogeneous system.

Theorem (§2.2 Theorem 3)

Suppose that \(x_1 \) is a particular solution to the system of linear equations \(Ax = b \).

- If \(x_0 \) is a solution to the associated homogeneous system then \(x_1 + x_0 \) is another solution to \(Ax = b \).
- Every solution to \(Ax = b \) has the form \(x_1 + x_0 \) for some solution \(x_0 \) to the associated homogeneous system.

Namely, we can go back and forth between solutions to \(Ax = b \) and solutions to \(Ax = 0 \) by adding or subtracting some solution \(x_1 \).
Example

The system of linear equations $A\mathbf{x} = \mathbf{b}$, with

$$
A = \begin{bmatrix}
2 & 1 & 3 & 3 \\
0 & 1 & -1 & 1 \\
-1 & 1 & -3 & 0
\end{bmatrix}
$$

and

$$
\mathbf{b} = \begin{bmatrix}
4 \\
2 \\
1
\end{bmatrix}
$$

has solution

$$
\mathbf{x} = \begin{bmatrix}
1 - 2s - t \\
2 + s - t \\
s \\
t
\end{bmatrix}
= \begin{bmatrix}
1 \\
2 \\
0 \\
0
\end{bmatrix}
+ s \begin{bmatrix}
-2 \\
1 \\
1 \\
0
\end{bmatrix}
+ t \begin{bmatrix}
-1 \\
-1 \\
0 \\
1
\end{bmatrix}, \quad s, t \in \mathbb{R}.
$$
Example (continued)

Furthermore, \(x_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} \) is a particular solution to \(Ax = b \)

(obtained by setting \(s = t = 0 \)), while

\[
x_0 = s \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \quad s, t \in \mathbb{R}
\]

is the general solution, in parametric form, to the associated homogeneous system \(Ax = 0 \).

Example 7 (p. 48) is similar.
Matrix Transformations

Examples

- In \mathbb{R}^2, reflection in the x-axis transforms $\begin{bmatrix} a \\ b \end{bmatrix}$ to $\begin{bmatrix} a \\ -b \end{bmatrix}$.
- In \mathbb{R}^2, reflection in the y-axis transforms $\begin{bmatrix} a \\ b \end{bmatrix}$ to $\begin{bmatrix} -a \\ b \end{bmatrix}$.

A transformation from \mathbb{R}^n to \mathbb{R}^m (also called just a transformation or function) is a rule assigning a vector in \mathbb{R}^m to each vector in \mathbb{R}^n. We write

$$T : \mathbb{R}^n \to \mathbb{R}^m \text{ or } \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

If $m = n$, then we say T is a transformation of \mathbb{R}^n.
Specifying a transformation symbolically

Example

\[T : \mathbb{R}^3 \rightarrow \mathbb{R}^4 \text{ defined by} \]

\[
T \begin{bmatrix}
 a \\
 b \\
 c
\end{bmatrix} = \begin{bmatrix}
 a + b \\
 b + c \\
 a - c \\
 c - b
\end{bmatrix}
\]

is a transformation.
Specifying a transformation pictorially

Reflection in the x-axis: $\begin{bmatrix} a \\ b \end{bmatrix} \mapsto \begin{bmatrix} a \\ -b \end{bmatrix}$.
Specifying a transformation pictorially

Reflection in the y-axis: \[
\begin{bmatrix}
a \\
b
\end{bmatrix} \mapsto \begin{bmatrix}
-a \\
b
\end{bmatrix}.
\]
Specifying a transformation pictorially

Rotation by $\frac{\pi}{2}$: \[
\begin{bmatrix}
a \\
b
\end{bmatrix} \mapsto \begin{bmatrix}
-b \\
a
\end{bmatrix}.
\]
Specifying a transformation pictorially

Expansion by a factor of 2: \[
\begin{bmatrix}
a \\
b
\end{bmatrix} \mapsto \begin{bmatrix}
2a \\
2b
\end{bmatrix}.
\]
Specifying a transformation pictorially

Compression by a factor of 2: \[
\begin{bmatrix}
a \\
b
\end{bmatrix} \mapsto \begin{bmatrix}
a/2 \\
b/2
\end{bmatrix}.
\]
Specifying a transformation pictorially

\[\begin{bmatrix} a \\ b \end{bmatrix} \mapsto \begin{bmatrix} 2a \\ b \end{bmatrix}. \]
Specifying a transformation pictorially

\[\begin{bmatrix} a \\ b \end{bmatrix} \rightarrow \begin{bmatrix} a/2 \\ b \end{bmatrix}. \]
Specifying a transformation pictorially

Positive x-shear: $\begin{bmatrix} a \\ b \end{bmatrix} \mapsto \begin{bmatrix} a + b/2 \\ b \end{bmatrix}$.
Specifying a transformation pictorially

Negative x-shear: \[
\begin{bmatrix} a \\ b \end{bmatrix} \mapsto \begin{bmatrix} a - b/2 \\ b \end{bmatrix}.
\]
To specify a transformation pictorially, we need to know that the whole picture extends what we can see. It suffices to know that the transformation is linear:

1. \(T(x + y) = T(x) + T(y) \) for all \(x, y \in \mathbb{R}^n \),
2. \(T(kx) = kT(x) \) for all \(x \in \mathbb{R}^n \) and \(k \in \mathbb{R} \).

We will return to this notion in §2.6.
Matrix Transformation

Let A be an $m \times n$ matrix. The transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T(x) = Ax \text{ for each } x \in \mathbb{R}^n$$

is called the matrix transformation induced by A.
Matrix Transformation

Let A be an $m \times n$ matrix. The transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ defined by

$$T(x) = Ax$$

for each $x \in \mathbb{R}^n$ is called the matrix transformation induced by A.

Example

In \mathbb{R}^2, reflection in the x-axis, which transforms $\begin{bmatrix} a \\ b \end{bmatrix}$ to $\begin{bmatrix} a \\ -b \end{bmatrix}$, is a matrix transformation because

$$\begin{bmatrix} a \\ -b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}.$$
Matrix Transformation

Let A be an $m \times n$ matrix. The transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ defined by

$$T(x) = Ax \text{ for each } x \in \mathbb{R}^n$$

is called the matrix transformation induced by A.

Example

In \mathbb{R}^2, reflection in the x-axis, which transforms $\begin{bmatrix} a \\ b \end{bmatrix}$ to $\begin{bmatrix} a \\ -b \end{bmatrix}$, is a matrix transformation because

$$\begin{bmatrix} a \\ -b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}.$$
Example

The transformation \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^4 \) defined by

\[
T \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a + b \\ b + c \\ a - c \\ c - b \end{bmatrix}
\]

is a matrix transformation.
Example

The transformation \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^4 \) defined by

\[
T \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a + b \\ b + c \\ a - c \\ c - b \end{bmatrix}
\]

is a matrix transformation.

\(T \) is induced by the matrix

\[
A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{bmatrix}
\]
Definition (Equality of Transformations)

Suppose \(S : \mathbb{R}^n \to \mathbb{R}^m \) and \(T : \mathbb{R}^n \to \mathbb{R}^m \) are transformations. Then \(S = T \) if and only if \(S(x) = T(x) \) for every \(x \in \mathbb{R}^n \).
Summary

1. Associated Homogeneous Systems

2. Matrix Transformations