Linear Methods (Math 211) - Lecture 6, §2.2

(with slides adapted from K. Seyffarth)

David Roe

September 20, 2013

Recall

- Vectors
- 2 The Matrix-Vector Product
- The Dot Product

Matrix Transformations

Associated Homogeneous Systems

2 Matrix Transformations

Given a linear system $A\mathbf{x} = \mathbf{b}$, the system $A\mathbf{x} = \mathbf{0}$ is called the associated homogeneous system.

Theorem ($\S2.2$ Theorem 3)

Suppose that \mathbf{x}_1 is a particular solution to the system of linear equations $A\mathbf{x} = \mathbf{b}$.

- If \mathbf{x}_0 is a solution to the associated homogeneous system then $\mathbf{x}_1 + \mathbf{x}_0$ is another solution to $A\mathbf{x} = \mathbf{b}$.
- Every solution to Ax = b has the form x₁ + x₀ for some solution x₀ to the associated homogeneous system.

Namely, we can go back and forth between solutions to $A\mathbf{x} = \mathbf{b}$ and solutions to $A\mathbf{x} = 0$ by adding or subtracting some solution x_1 .

Example

The system of linear equations $A\mathbf{x} = \mathbf{b}$, with

$$A = \begin{bmatrix} 2 & 1 & 3 & 3 \\ 0 & 1 & -1 & 1 \\ -1 & 1 & -3 & 0 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$$

has solution

$$\mathbf{x} = \begin{bmatrix} 1-2s-t\\2+s-t\\s\\t \end{bmatrix} = \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix} + s \begin{bmatrix} -2\\1\\1\\0 \end{bmatrix} + t \begin{bmatrix} -1\\-1\\0\\1 \end{bmatrix}, \quad s,t \in \mathbb{R}.$$

Example (continued)

Furthermore,
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$
 is a particular solution to $A\mathbf{x} = \mathbf{b}$

(obtained by setting s = t = 0), while

$$\mathbf{x}_0 = s \begin{bmatrix} -2\\1\\1\\0 \end{bmatrix} + t \begin{bmatrix} -1\\-1\\0\\1 \end{bmatrix}, \quad s, t \in \mathbb{R}$$

is the general solution, in parametric form, to the associated homogeneous system $A\mathbf{x} = \mathbf{0}$.

Example 7 (p. 48) is similar.

Matrix Transformations

Matrix Transformations

A transformation from \mathbb{R}^n to \mathbb{R}^m (also called just a transformation or function) is a rule assigning a vector in \mathbb{R}^m to each vector in \mathbb{R}^n . We write

$$T: \mathbb{R}^n \to \mathbb{R}^m \text{ or}$$
$$\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

If m = n, then we say T is a transformation of \mathbb{R}^n .

Specifying a transformation symbolically

Example

 $\mathcal{T}:\mathbb{R}^3\to\mathbb{R}^4$ defined by

$$T\begin{bmatrix}a\\b\\c\end{bmatrix}=egin{bmatrix}a+b\\b+c\\a-c\\c-b\end{bmatrix}$$

is a transformation.

Matrix Transformations

Matrix Transformations

Matrix Transformations

Matrix Transformations

Matrix Transformations

Matrix Transformations

Linear Transformations

To specify a transformation pictorially, we need to know that that the whole picture extends what we can see. It suffices to know that the transformation is linear:

- $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,
- **2** $T(k\mathbf{x}) = kT(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$ and $k \in \mathbb{R}$.

We will return to this notion in $\S2.6$.

Matrix Transformation

Let A be an $m \times n$ matrix. The transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T(\mathbf{x}) = A\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$

is called the matrix transformation induced by A.

Matrix Transformation

Let A be an $m \times n$ matrix. The transformation $\mathcal{T} : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T(\mathbf{x}) = A\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$

is called the matrix transformation induced by A.

Example In \mathbb{R}^2 , reflection in the x-axis, which transforms $\begin{bmatrix} a \\ b \end{bmatrix}$ to $\begin{bmatrix} a \\ -b \end{bmatrix}$, is a matrix transformation because $\begin{bmatrix} a \\ -b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$.

Matrix Transformation

Let A be an $m \times n$ matrix. The transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T(\mathbf{x}) = A\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$

is called the matrix transformation induced by A.

Example In \mathbb{R}^2 , reflection in the x-axis, which transforms $\begin{bmatrix} a \\ b \end{bmatrix}$ to $\begin{bmatrix} a \\ -b \end{bmatrix}$, is a matrix transformation because $\begin{bmatrix} a \\ -b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$.

Preview: linear transformations and matrix transformations are the same class of transformations.

Example

The transformation $\, \mathcal{T} : \mathbb{R}^3 \to \mathbb{R}^4$ defined by

$$T\begin{bmatrix}a\\b\\c\end{bmatrix}=egin{bmatrix}a+b\\b+c\\a-c\\c-b\end{bmatrix}$$

is a matrix transformation.

Example

The transformation $\, \mathcal{T} : \mathbb{R}^3 \to \mathbb{R}^4$ defined by

$$T\begin{bmatrix}a\\b\\c\end{bmatrix}=egin{bmatrix}a+b\\b+c\\a-c\\c-b\end{bmatrix}$$

is a matrix transformation.

 $\ensuremath{\mathcal{T}}$ is induced by the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

Definition (Equality of Transformations)

Suppose $S : \mathbb{R}^n \to \mathbb{R}^m$ and $T : \mathbb{R}^n \to \mathbb{R}^m$ are transformations. Then S = T if and only if $S(\mathbf{x}) = T(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^n$.

Matrix Transformations 0000000000000000

Associated Homogeneous Systems

2 Matrix Transformations