The Matrix-Vector Product 0000000

The Dot Product

CENTRE FOR INTERNATIONAL STUDENTS AND STUDY ABROAD

Find out how to Study Abroad!

Wednesdays @ 1:00pm & Thursdays @ 11:00am 45 minute info sessions in CISSA (MSC 275)

@uccissa

ucalgary.ca/uci/abroad

Linear Methods (Math 211) - Lecture 5, §2.2

(with slides adapted from K. Seyffarth)

David Roe

September 18, 2013

Vector: 000 The Matrix-Vector Product 0000000

The Dot Product

Recall

- Matrices
- **2** Matrix Addition and Scalar Multiplication
- **③** Transposition and Symmetric Matrices
- Examples

Vectors

The Matrix-Vector Product

The Dot Product

2 The Matrix-Vector Product

Example

The linear system

has coefficient matrix A and constant matrix B, where

$$A = \begin{bmatrix} 1 & 1 & -1 & 3 \\ -1 & 4 & 5 & -2 \\ 1 & 6 & 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

Example

The linear system

has **coefficient** matrix A and **constant** matrix B, where

$$A = \begin{bmatrix} 1 & 1 & -1 & 3 \\ -1 & 4 & 5 & -2 \\ 1 & 6 & 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

Using (matrix) addition and scalar multiplication, we can rewrite this system as

$$\begin{bmatrix} 1\\-1\\1 \end{bmatrix} x_1 + \begin{bmatrix} 1\\4\\6 \end{bmatrix} x_2 + \begin{bmatrix} -1\\5\\-2 \end{bmatrix} x_3 + \begin{bmatrix} 3\\-2\\4 \end{bmatrix} x_4 = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}$$

This example illustrates the fact that solving a system of linear equations is equivalent to finding the coefficients of a linear combination of the columns of the coefficient matrix A so that the result is equal to the constant matrix B.

Notation and Terminology

- \mathbb{R} : the set of real numbers.
- \mathbb{R}^n : set of columns (with entries from \mathbb{R}) having *n* rows.

$$\begin{bmatrix} 1\\-1\\0\\3\end{bmatrix} \in \mathbb{R}^4, \begin{bmatrix} -6\\5\end{bmatrix} \in \mathbb{R}^2, \begin{bmatrix} 2\\3\\-7\end{bmatrix} \in \mathbb{R}^3.$$

- The columns of \mathbb{R}^n are also called vectors or *n*-vectors.
- To save space, a vector is sometimes written as the transpose of a row matrix.

$$\begin{bmatrix} 1 & -1 & 0 & 3 \end{bmatrix}^T \in \mathbb{R}^4$$

The Matrix-Vector Product

Let $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$ be an $m \times n$ matrix with columns $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, and $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$ any *n*-vector. The product $A\mathbf{x}$ is defined as the *m*-vector given by

 $\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \cdots \mathbf{a}_n x_n,$

i.e., $A\mathbf{x}$ is a **linear combination** of the columns of A (and the coefficients are the entries of \mathbf{x} , in order).

As with matrix addition, there is a constraint on the size of the inputs: the number of **columns** of A must equal the number of **rows** of **x**.

Matrix Equations

If a system of *m* linear equations in *n* variables has the $m \times n$ matrix *A* as its coefficient matrix, the *n*-vector **b** as its constant matrix, and the *n*-vector **x** as the matrix of variables, then the system can be written as the matrix equation

$$A\mathbf{x} = \mathbf{b}.$$

Theorem ($\S2.2$ Theorem 1)

- Every system of linear equations has the form $A\mathbf{x} = \mathbf{b}$ where A is the coefficient matrix, \mathbf{x} is the matrix of variables, and \mathbf{b} is the constant matrix.
- Ax = b is consistent if and only if b is a linear combination of the columns of A.
- If $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix}$, then $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$ is a solution to $A\mathbf{x} = \mathbf{b}$ if and only if x_1, x_2, \dots, x_n are a solution to the vector equation

$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \cdots + \mathbf{a}_n x_n = \mathbf{b}.$$

Example

Let

$$A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix} \text{ and } \mathbf{y} = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 4 \end{bmatrix}$$

Compute Ay.
Can b = ¹ ¹ ¹ be expressed as a linear combination of the columns of A? If so, find a linear combination that does so.

Example (continued)

$$\mathbf{A}\mathbf{y} = 2 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + (-1) \begin{bmatrix} 0\\-1\\1 \end{bmatrix} + 1 \begin{bmatrix} 2\\0\\3 \end{bmatrix} + 4 \begin{bmatrix} -1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\9\\12 \end{bmatrix}$$

Example (continued)

•
$$A\mathbf{y} = 2\begin{bmatrix}1\\2\\3\end{bmatrix} + (-1)\begin{bmatrix}0\\-1\\1\end{bmatrix} + 1\begin{bmatrix}2\\0\\3\end{bmatrix} + 4\begin{bmatrix}-1\\1\\1\end{bmatrix} = \begin{bmatrix}0\\9\\12\end{bmatrix}$$

Solve the system $A\mathbf{x} = \mathbf{b}$ for $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T$. To do this, put the **augmented matrix** $\begin{bmatrix} A & | & \mathbf{b} \end{bmatrix}$ in reduced row-echelon form.

$$\begin{bmatrix} 1 & 0 & 2 & -1 & | & 1 \\ 2 & -1 & 0 & 1 & | & 1 \\ 3 & 1 & 3 & 1 & | & 1 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & 0 & 1 & | & \frac{1}{7} \\ 0 & 1 & 0 & 1 & | & -\frac{5}{7} \\ 0 & 0 & 1 & -1 & | & \frac{3}{7} \end{bmatrix}$$

Example (continued)

•
$$A\mathbf{y} = 2\begin{bmatrix}1\\2\\3\end{bmatrix} + (-1)\begin{bmatrix}0\\-1\\1\end{bmatrix} + 1\begin{bmatrix}2\\0\\3\end{bmatrix} + 4\begin{bmatrix}-1\\1\\1\end{bmatrix} = \begin{bmatrix}0\\9\\12\end{bmatrix}$$

Solve the system $A\mathbf{x} = \mathbf{b}$ for $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T$. To do this, put the **augmented matrix** $\begin{bmatrix} A & b \end{bmatrix}$ in reduced row-echelon form.

$$\begin{bmatrix} 1 & 0 & 2 & -1 & | & 1 \\ 2 & -1 & 0 & 1 & | & 1 \\ 3 & 1 & 3 & 1 & | & 1 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & 0 & 1 & | & \frac{1}{7} \\ 0 & 1 & 0 & 1 & | & -\frac{5}{7} \\ 0 & 0 & 1 & -1 & | & \frac{3}{7} \end{bmatrix}$$

Since there are infinitely many solutions, simply choose a value for x_4 . Taking $x_4 = 0$ gives us

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \frac{5}{7} \begin{bmatrix} 0\\-1\\1 \end{bmatrix} + \frac{3}{7} \begin{bmatrix} 2\\0\\3 \end{bmatrix}.$$

Example (Example 5, p. 44.)

Write **0** for the *m*-vector of all zeros.

- If A is the $m \times n$ matrix of all zeros, then $A\mathbf{x} = \mathbf{0}$ for any *n*-vector \mathbf{x} .
- If **x** is the *n*-vector of zeros, then $A\mathbf{x} = \mathbf{0}$ for any $m \times n$ matrix A.

As with matrices, we will generally use the symbol ${\bf 0}$ to refer to a zero vector of any size.

Vector: 000 The Matrix-Vector Product

The Dot Product

Properties of Matrix-Vector Multiplication

Theorem ($\S2.2$ Theorem 2)

Let A and B be $m \times n$ matrices, $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ be n-vectors, and $k \in \mathbb{R}$ be a scalar.

$$\mathbf{0} \ A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}$$

$$(A+B)\mathbf{x} = A\mathbf{x} + B\mathbf{x}$$

The Dot Product

The dot product of two *n*-tuples (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) is the number (scalar)

 $a_1b_1+a_2b_2+\cdots+a_nb_n.$

The Dot Product

The dot product of two *n*-tuples (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) is the number (scalar)

$$a_1b_1+a_2b_2+\cdots+a_nb_n.$$

Theorem ($\S2.2$ Theorem 4)

Suppose that A is an $m \times n$ matrix and that **x** is an n-vector. Then the *i*th entry of A**x** is the dot product of the *i*th row of A with **x**.

Vectors

The Matrix-Vector Product 0000000

The Dot Product

Example

Compute the product

$$\begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \\ 12 \end{bmatrix}$$

using dot products.

The Matrix-Vector Product 0000000

The Dot Product

Example

Compute the product

$$\begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \\ 12 \end{bmatrix}$$

using dot products.

$$\begin{bmatrix} 1\\0\\2\\-1\end{bmatrix} \cdot \begin{bmatrix} 2\\-1\\1\\4\end{bmatrix} = 0 \quad \begin{bmatrix} 2\\-1\\0\\1\end{bmatrix} \cdot \begin{bmatrix} 2\\-1\\1\\4\end{bmatrix} = 9 \quad \begin{bmatrix} 3\\1\\3\\1\end{bmatrix} \cdot \begin{bmatrix} 2\\-1\\1\\4\end{bmatrix} = 12$$

The $n \times n$ identity matrix, denoted I_n is the matrix having ones on its main diagonal and zeros elsewhere, and is defined for all $n \ge 2$.

Example 11 (p. 49) shows that for any *n*-vector \mathbf{x} , $I_n \mathbf{x} = \mathbf{x}$.

The Dot Product

The $n \times n$ identity matrix, denoted I_n is the matrix having ones on its main diagonal and zeros elsewhere, and is defined for all $n \ge 2$.

Example 11 (p. 49) shows that for any *n*-vector \mathbf{x} , $I_n \mathbf{x} = \mathbf{x}$.

For each j, $1 \le j \le n$, we denote by \mathbf{e}_j the j^{th} column of I_n .

The Dot Product

The $n \times n$ identity matrix, denoted I_n is the matrix having ones on its main diagonal and zeros elsewhere, and is defined for all $n \ge 2$.

Example 11 (p. 49) shows that for any *n*-vector \mathbf{x} , $I_n \mathbf{x} = \mathbf{x}$.

For each j, $1 \le j \le n$, we denote by \mathbf{e}_j the j^{th} column of I_n .

Theorem ($\S2.2$ Theorem 5)

Let A and B be $m \times n$ matrices. If $A\mathbf{x} = B\mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^n$, then A = B.

Proof.

 $A\mathbf{e}_i = B\mathbf{e}_i$ so the columns of A and B are the same.

Problem

Find examples of matrices A and B, and a vector $\mathbf{x} \neq 0$, so that $A\mathbf{x} = B\mathbf{x}$ but $A \neq B$.

Vectors

Summary

The Matrix-Vector Product

The Dot Product 00000

2 The Matrix-Vector Product

