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Recall
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Example

The linear system

x1 + x2 − x3 + 3x4 = 2
−x1 + 4x2 + 5x3 − 2x4 = 1
x1 + 6x2 + 3x3 + 4x4 = −1

has coefficient matrix A and constant matrix B, where

A =

 1 1 −1 3
−1 4 5 −2

1 6 3 4

 and B =

 2
1
−1

 .

Using (matrix) addition and scalar multiplication, we can rewrite
this system as 1

−1
1

 x1 +

1
4
6

 x2 +

−1
5
−2

 x3 +

 3
−2

4

 x4 =

 2
1
−1


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This example illustrates the fact that solving a system of linear
equations is equivalent to finding the coefficients of a linear
combination of the columns of the coefficient matrix A so that the
result is equal to the constant matrix B.
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Notation and Terminology

R: the set of real numbers.

Rn: set of columns (with entries from R) having n rows.
1
−1

0
3

 ∈ R4,

[
−6

5

]
∈ R2,

 2
3
−7

 ∈ R3.

The columns of Rn are also called vectors or n-vectors.

To save space, a vector is sometimes written as the transpose
of a row matrix. [

1 −1 0 3
]T ∈ R4
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The Matrix-Vector Product

Let A =
[
a1 a2 · · · an

]
be an m × n matrix with columns

a1, a2, . . . , an, and x =
[
x1 x2 . . . xn

]T
any n-vector.

The product Ax is defined as the m-vector given by

a1x1 + a2x2 + · · · anxn,

i.e., Ax is a linear combination of the columns of A (and the
coefficients are the entries of x, in order).
As with matrix addition, there is a constraint on the size of the
inputs: the number of columns of A must equal the number of
rows of x.
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Matrix Equations

If a system of m linear equations in n variables has the m × n
matrix A as its coefficient matrix, the n-vector b as its constant
matrix, and the n-vector x as the matrix of variables, then the
system can be written as the matrix equation

Ax = b.
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Theorem (§2.2 Theorem 1)

Every system of linear equations has the form Ax = b where A
is the coefficient matrix, x is the matrix of variables, and b is
the constant matrix.

Ax = b is consistent if and only if b is a linear combination
of the columns of A.

If A =
[
a1 a2 . . . an

]
, then x =

[
x1 x2 . . . xn

]T
is a

solution to Ax = b if and only if x1, x2, . . . , xn are a solution
to the vector equation

a1x1 + a2x2 + · · · anxn = b.
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Example

Let

A =

1 0 2 −1
2 −1 0 1
3 1 3 1

 and y =


2
−1

1
4


1 Compute Ay.

2 Can b =

1
1
1

 be expressed as a linear combination of the

columns of A? If so, find a linear combination that does so.
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Example (continued)

1 Ay = 2

1
2
3

+ (−1)

 0
−1

1

+ 1

2
0
3

+ 4

−1
1
1

 =

 0
9

12


2 Solve the system Ax = b for x =

[
x1 x2 x3 x4

]T
. To do

this, put the augmented matrix
[
A b

]
in reduced

row-echelon form.1 0 2 −1 1
2 −1 0 1 1
3 1 3 1 1

→ · · · →
1 0 0 1 1

7
0 1 0 1 −5

7
0 0 1 −1 3

7


Since there are infinitely many solutions, simply choose a
value for x4. Taking x4 = 0 gives us1

1
1

 =
1

7

1
2
3

− 5

7

 0
−1

1

+
3

7

2
0
3

 .
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Example (Example 5, p. 44.)

Write 0 for the m-vector of all zeros.

If A is the m × n matrix of all zeros, then Ax = 0 for any
n-vector x.

If x is the n-vector of zeros, then Ax = 0 for any m× n matrix
A.

As with matrices, we will generally use the symbol 0 to refer to a
zero vector of any size.
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Properties of Matrix-Vector Multiplication

Theorem (§2.2 Theorem 2)

Let A and B be m× n matrices, x, y ∈ Rn be n-vectors, and k ∈ R
be a scalar.

1 A(x + y) = Ax + Ay

2 A(kx) = k(Ax) = (kA)x

3 (A + B)x = Ax + Bx
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The Dot Product

The dot product of two n-tuples (a1, a2, . . . , an) and
(b1, b2, . . . , bn) is the number (scalar)

a1b1 + a2b2 + · · ·+ anbn.

Theorem (§2.2 Theorem 4)

Suppose that A is an m× n matrix and that x is an n-vector. Then

the ith entry of Ax is the dot product of the ith row of A with x.
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Example

Compute the product

1 0 2 −1
2 −1 0 1
3 1 3 1




2
−1

1
4

 =

 0
9

12


using dot products.

1
0
2
−1

 ·


2
−1

1
4

 = 0


2
−1

0
1

 ·


2
−1

1
4

 = 9


3
1
3
1

 ·


2
−1

1
4

 = 12
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The n × n identity matrix, denoted In is the matrix having ones on
its main diagonal and zeros elsewhere, and is defined for all n ≥ 2.

Example 11 (p. 49) shows that for any n-vector x, Inx = x.

For each j , 1 ≤ j ≤ n, we denote by ej the jth column of In.

Theorem (§2.2 Theorem 5)

Let A and B be m× n matrices. If Ax = Bx for every x ∈ Rn, then
A = B.

Proof.

Aej = Bej so the columns of A and B are the same.
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Problem

Find examples of matrices A and B, and a vector x 6= 0, so that
Ax = Bx but A 6= B.
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Summary
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