

Find out how to Study Abroad!

Wednesdays @ 1:00pm \& Thursdays @ 11:00am 45 minute info sessions in CISSA (MSC 275)

Linear Methods (Math 211) - Lecture 5, §2.2

(with slides adapted from K. Seyffarth)

David Roe

September 18, 2013

Recall

(1) Matrices
(2) Matrix Addition and Scalar Multiplication
(3) Transposition and Symmetric Matrices
(3) Examples

Today

(1) Vectors
(2) The Matrix-Vector Product
(3) The Dot Product

Example

The linear system

$$
\begin{gathered}
x_{1}+x_{2}-x_{3}+3 x_{4}=2 \\
-x_{1}+4 x_{2}+5 x_{3}-2 x_{4}=1 \\
x_{1}+6 x_{2}+3 x_{3}+4 x_{4}=-1
\end{gathered}
$$

has coefficient matrix A and constant matrix B, where

$$
A=\left[\begin{array}{rrrr}
1 & 1 & -1 & 3 \\
-1 & 4 & 5 & -2 \\
1 & 6 & 3 & 4
\end{array}\right] \text { and } B=\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right]
$$

Example

The linear system

$$
\begin{gathered}
x_{1}+x_{2}-x_{3}+3 x_{4}=2 \\
-x_{1}+4 x_{2}+5 x_{3}-2 x_{4}=1 \\
x_{1}+6 x_{2}+3 x_{3}+4 x_{4}=-1
\end{gathered}
$$

has coefficient matrix A and constant matrix B, where

$$
A=\left[\begin{array}{rrrr}
1 & 1 & -1 & 3 \\
-1 & 4 & 5 & -2 \\
1 & 6 & 3 & 4
\end{array}\right] \text { and } B=\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right]
$$

Using (matrix) addition and scalar multiplication, we can rewrite this system as

$$
\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] x_{1}+\left[\begin{array}{l}
1 \\
4 \\
6
\end{array}\right] x_{2}+\left[\begin{array}{r}
-1 \\
5 \\
-2
\end{array}\right] x_{3}+\left[\begin{array}{r}
3 \\
-2 \\
4
\end{array}\right] x_{4}=\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right]
$$

This example illustrates the fact that solving a system of linear equations is equivalent to finding the coefficients of a linear combination of the columns of the coefficient matrix A so that the result is equal to the constant matrix B.

Notation and Terminology

- \mathbb{R} : the set of real numbers.
- \mathbb{R}^{n} : set of columns (with entries from \mathbb{R}) having n rows.

$$
\left[\begin{array}{r}
1 \\
-1 \\
0 \\
3
\end{array}\right] \in \mathbb{R}^{4},\left[\begin{array}{r}
-6 \\
5
\end{array}\right] \in \mathbb{R}^{2},\left[\begin{array}{r}
2 \\
3 \\
-7
\end{array}\right] \in \mathbb{R}^{3} .
$$

- The columns of \mathbb{R}^{n} are also called vectors or n-vectors.
- To save space, a vector is sometimes written as the transpose of a row matrix.

$$
\left[\begin{array}{llll}
1 & -1 & 0 & 3
\end{array}\right]^{T} \in \mathbb{R}^{4}
$$

The Matrix-Vector Product

Let $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$, and $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]^{T}$ any n-vector. The product $A \mathbf{x}$ is defined as the m-vector given by

$$
\mathbf{a}_{1} x_{1}+\mathbf{a}_{2} x_{2}+\cdots \mathbf{a}_{n} x_{n},
$$

i.e., $A \mathbf{x}$ is a linear combination of the columns of A (and the coefficients are the entries of \mathbf{x}, in order).
As with matrix addition, there is a constraint on the size of the inputs: the number of columns of A must equal the number of rows of \mathbf{x}.

Matrix Equations

If a system of m linear equations in n variables has the $m \times n$ matrix A as its coefficient matrix, the n-vector \mathbf{b} as its constant matrix, and the n-vector \mathbf{x} as the matrix of variables, then the system can be written as the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

Theorem (§2.2 Theorem 1)

- Every system of linear equations has the form $A \mathbf{x}=\mathbf{b}$ where A is the coefficient matrix, \mathbf{x} is the matrix of variables, and \mathbf{b} is the constant matrix.
- $A \mathbf{x}=\mathbf{b}$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.
- If $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$, then $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]^{T}$ is a solution to $\mathbf{A x}=\mathbf{b}$ if and only if $x_{1}, x_{2}, \ldots, x_{n}$ are a solution to the vector equation

$$
\mathbf{a}_{1} x_{1}+\mathbf{a}_{2} x_{2}+\cdots \mathbf{a}_{n} x_{n}=\mathbf{b}
$$

Example

Let

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
2 & -1 & 0 & 1 \\
3 & 1 & 3 & 1
\end{array}\right] \text { and } \mathbf{y}=\left[\begin{array}{r}
2 \\
-1 \\
1 \\
4
\end{array}\right]
$$

(1) Compute $A \mathbf{y}$.
(2) Can $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ be expressed as a linear combination of the columns of A ? If so, find a linear combination that does so.

Example (continued)

(1) $A \mathbf{y}=2\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+(-1)\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]+1\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]+4\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}0 \\ 9 \\ 12\end{array}\right]$

Example (continued)

(1) $A \mathbf{y}=2\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+(-1)\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]+1\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]+4\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}0 \\ 9 \\ 12\end{array}\right]$
(2) Solve the system $A \mathbf{x}=\mathbf{b}$ for $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T}$. To do this, put the augmented matrix $[A \mid \mathbf{b}]$ in reduced row-echelon form.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 2 & -1 & 1 \\
2 & -1 & 0 & 1 & 1 \\
3 & 1 & 3 & 1 & 1
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 1 & \frac{1}{7} \\
0 & 1 & 0 & 1 & -\frac{5}{7} \\
0 & 0 & 1 & -1 & \frac{3}{7}
\end{array}\right]
$$

Example (continued)

(1) $A \mathbf{y}=2\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+(-1)\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]+1\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]+4\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}0 \\ 9 \\ 12\end{array}\right]$
(2) Solve the system $A \mathbf{x}=\mathbf{b}$ for $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T}$. To do this, put the augmented matrix $[A \mid \mathbf{b}]$ in reduced row-echelon form.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 2 & -1 & 1 \\
2 & -1 & 0 & 1 & 1 \\
3 & 1 & 3 & 1 & 1
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 1 & \frac{1}{7} \\
0 & 1 & 0 & 1 & -\frac{5}{7} \\
0 & 0 & 1 & -1 & \frac{3}{7}
\end{array}\right]
$$

Since there are infinitely many solutions, simply choose a value for x_{4}. Taking $x_{4}=0$ gives us

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\frac{1}{7}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\frac{5}{7}\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]+\frac{3}{7}\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right] .
$$

Example (Example 5, p. 44.)

Write $\mathbf{0}$ for the m-vector of all zeros.

- If A is the $m \times n$ matrix of all zeros, then $A \mathbf{x}=\mathbf{0}$ for any n-vector \mathbf{x}.
- If \mathbf{x} is the n-vector of zeros, then $A \mathbf{x}=\mathbf{0}$ for any $m \times n$ matrix A.

As with matrices, we will generally use the symbol $\mathbf{0}$ to refer to a zero vector of any size.

Properties of Matrix-Vector Multiplication

Theorem (§2.2 Theorem 2)

Let A and B be $m \times n$ matrices, $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ be n-vectors, and $k \in \mathbb{R}$ be a scalar.
(1) $A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}$
(2) $A(k \mathbf{x})=k(A \mathbf{x})=(k A) \mathbf{x}$
(3) $(A+B) \mathbf{x}=A \mathbf{x}+B \mathbf{x}$

The Dot Product

The dot product of two n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is the number (scalar)

$$
a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} .
$$

The Dot Product

The dot product of two n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is the number (scalar)

$$
a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} .
$$

Theorem (§2.2 Theorem 4)

Suppose that A is an $m \times n$ matrix and that \mathbf{x} is an n-vector. Then the $i^{\text {th }}$ entry of $A \mathbf{x}$ is the dot product of the $i^{\text {th }}$ row of A with \mathbf{x}.

Example

Compute the product

$$
\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
2 & -1 & 0 & 1 \\
3 & 1 & 3 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{r}
0 \\
9 \\
12
\end{array}\right]
$$

using dot products.

Example
Compute the product

$$
\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
2 & -1 & 0 & 1 \\
3 & 1 & 3 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{r}
0 \\
9 \\
12
\end{array}\right]
$$

using dot products.

$$
\left[\begin{array}{r}
1 \\
0 \\
2 \\
-1
\end{array}\right] \cdot\left[\begin{array}{r}
2 \\
-1 \\
1 \\
4
\end{array}\right]=0 \quad\left[\begin{array}{r}
2 \\
-1 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
2 \\
-1 \\
1 \\
4
\end{array}\right]=9 \quad\left[\begin{array}{l}
3 \\
1 \\
3 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
2 \\
-1 \\
1 \\
4
\end{array}\right]=12
$$

The $n \times n$ identity matrix, denoted I_{n} is the matrix having ones on its main diagonal and zeros elsewhere, and is defined for all $n \geq 2$.

Example 11 (p. 49) shows that for any n-vector $\mathbf{x}, I_{n} \mathbf{x}=\mathbf{x}$.

The $n \times n$ identity matrix, denoted I_{n} is the matrix having ones on its main diagonal and zeros elsewhere, and is defined for all $n \geq 2$.

Example 11 (p. 49) shows that for any n-vector $\mathbf{x}, I_{n} \mathbf{x}=\mathbf{x}$.
For each $j, 1 \leq j \leq n$, we denote by \mathbf{e}_{j} the $j^{\text {th }}$ column of I_{n}.

The $n \times n$ identity matrix, denoted I_{n} is the matrix having ones on its main diagonal and zeros elsewhere, and is defined for all $n \geq 2$.

Example 11 (p. 49) shows that for any n-vector $\mathbf{x}, I_{n} \mathbf{x}=\mathbf{x}$.
For each $j, 1 \leq j \leq n$, we denote by \mathbf{e}_{j} the $j^{\text {th }}$ column of I_{n}.

Theorem (§2.2 Theorem 5)

Let A and B be $m \times n$ matrices. If $A \mathbf{x}=B \mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^{n}$, then $A=B$.

Proof.

$A \mathbf{e}_{j}=B \mathbf{e}_{j}$ so the columns of A and B are the same.

Problem

Find examples of matrices A and B, and a vector $\mathbf{x} \neq 0$, so that $A \mathbf{x}=B \mathbf{x}$ but $A \neq B$.

Summary

(1) Vectors
(2) The Matrix-Vector Product
(3) The Dot Product

