Linear Methods (Math 211) - Lecture 4, §2.1

(with slides adapted from K. Seyffarth)

David Roe

September 16, 2013
Recall

Last time:

1. Gaussian elimination
2. Homogeneous systems - linear combinations, qualitative behavior and basic solutions
Today

1. Matrices
2. Matrix Addition and Scalar Multiplication
3. Transposition and Symmetric Matrices
4. Examples
Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.

Matrices - Basic Definitions and Notation
Let m and n be positive integers.

- **An $m \times n$ matrix** is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.
- **A row matrix** is a $1 \times n$ matrix, and **a column matrix** (or column) is an $m \times 1$ matrix.
Matrices - Basic Definitions and Notation

Let m and n be positive integers.

- **An $m \times n$ matrix** is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.

- **A row matrix** is a $1 \times n$ matrix, and **a column matrix** (or column) is an $m \times 1$ matrix.

- **A square matrix** is an $m \times m$ matrix.
Matrices - Basic Definitions and Notation

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.
- A row matrix is a $1 \times n$ matrix, and a column matrix (or column) is an $m \times 1$ matrix.
- A square matrix is an $m \times m$ matrix.
- The (i,j)-entry of a matrix is the entry in row i and column j.
Matrices - Basic Definitions and Notation

Let m and n be positive integers.

- **An $m \times n$ matrix** is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.
- **A row matrix** is a $1 \times n$ matrix, and **a column matrix** (or column) is an $m \times 1$ matrix.
- **A square matrix** is an $m \times m$ matrix.
- **The (i,j)-entry of a matrix** is the entry in row i and column j.

General notation for an $m \times n$ matrix, A:

$$A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \ldots & a_{mn}
\end{bmatrix} = [a_{ij}]$$
Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
Matrices - Properties and Operations

1. **Equality**: two matrices are equal if and only if they have the same size and the corresponding entries are equal.

2. **Addition**: matrices must have the same size; add corresponding entries.
Matrices - Properties and Operations

1. **Equality**: two matrices are equal if and only if they have the same size and the corresponding entries are equal.

2. **Addition**: matrices must have the same size; add corresponding entries.

3. **Scalar Multiplication**: multiply each entry of the matrix by the scalar.
Matrices - Properties and Operations

1. **Equality**: two matrices are equal if and only if they have the same size and the corresponding entries are equal.

2. **Addition**: matrices must have the same size; add corresponding entries.

3. **Scalar Multiplication**: multiply each entry of the matrix by the scalar.

4. **Zero Matrix**: an $m \times n$ matrix with all entries equal to zero.
Matrices - Properties and Operations

1. **Equality**: two matrices are equal if and only if they have the same size and the corresponding entries are equal.

2. **Addition**: matrices must have the same size; add corresponding entries.

3. **Scalar Multiplication**: multiply each entry of the matrix by the scalar.

4. **Zero Matrix**: an $m \times n$ matrix with all entries equal to zero.

5. **Negative of a Matrix**: for an $m \times n$ matrix A, its negative is denoted $-A$ and $-A = (-1)A$.
Matrices - Properties and Operations

1. **Equality:** two matrices are equal if and only if they have the same size and the corresponding entries are equal.

2. **Addition:** matrices must have the same size; add corresponding entries.

3. **Scalar Multiplication:** multiply each entry of the matrix by the scalar.

4. **Zero Matrix:** an \(m \times n \) matrix with all entries equal to zero.

5. **Negative of a Matrix:** for an \(m \times n \) matrix \(A \), its negative is denoted \(-A\) and \(-A = (-1)A\).

6. **Subtraction:** for \(m \times n \) matrices \(A \) and \(B \), \(A - B = A + (-1)B \).
Matrix form for solutions to linear systems

The reduced row echelon form of the augmented matrix for the system

\[
\begin{align*}
 x_1 - 2x_2 - x_3 + 3x_4 &= 1 \\
 2x_1 - 4x_2 + x_3 &= 5 \\
 x_1 - 2x_2 + 2x_3 - 3x_4 &= 4
\end{align*}
\]

is

\[
\begin{bmatrix}
 1 & -2 & 0 & 1 & 2 \\
 0 & 0 & 1 & -2 & 1 \\
 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

leading to the solution

\[
\begin{align*}
 x_1 &= 2 + 2s - t \\
 x_2 &= s \\
 x_3 &= 1 + 2t \\
 x_4 &= t
\end{align*}
\]

for parameters \(s \) and \(t \).
Matrix form for solutions to linear systems

\[
\begin{align*}
x_1 &= 2 + 2s - t \\
x_2 &= s \\
x_3 &= 1 + 2t \\
x_4 &= t
\end{align*}
\]

can be expressed as

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} =
\begin{bmatrix}
2 + 2s - t \\
s \\
1 + 2t \\
t
\end{bmatrix}.
\]

But

\[
\begin{bmatrix}
2 + 2s - t \\
s \\
1 + 2t \\
t
\end{bmatrix} =
\begin{bmatrix}
2 \\
0 \\
1 \\
0
\end{bmatrix}
+ s
\begin{bmatrix}
2 \\
1 \\
0 \\
0
\end{bmatrix}
+ t
\begin{bmatrix}
-1 \\
0 \\
2 \\
1
\end{bmatrix}
\]

Therefore,

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} =
\begin{bmatrix}
2 \\
0 \\
1 \\
0
\end{bmatrix}
+ s
\begin{bmatrix}
2 \\
1 \\
0 \\
0
\end{bmatrix}
+ t
\begin{bmatrix}
-1 \\
0 \\
2 \\
1
\end{bmatrix}
\]

for parameters \(s \) and \(t \).
Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

1. $A + B = B + A$
Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

1. $A + B = B + A$
2. $(A + B) + C = A + (B + C)$
Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B, and C be $m \times n$ matrices, and let k and p be scalars.

1. $A + B = B + A$
2. $(A + B) + C = A + (B + C)$
3. There is an $m \times n$ matrix 0 such that $A + 0 = A$ and $0 + A = A$.
Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

1. $A + B = B + A$
2. $(A + B) + C = A + (B + C)$
3. There is an $m \times n$ matrix 0 such that $A + 0 = A$ and $0 + A = A$.
4. For each A there is an $m \times n$ matrix $-A$ such that $A + (-A) = 0$ and $(-A) + A = 0$.
Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

1. $A + B = B + A$
2. $(A + B) + C = A + (B + C)$
3. There is an $m \times n$ matrix 0 such that $A + 0 = A$ and $0 + A = A$.
4. For each A there is an $m \times n$ matrix $-A$ such that $A + (-A) = 0$ and $(-A) + A = 0$.
5. $k(A + B) = kA + kB$
Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

1. $A + B = B + A$
2. $(A + B) + C = A + (B + C)$
3. There is an $m \times n$ matrix 0 such that $A + 0 = A$ and $0 + A = A$.
4. For each A there is an $m \times n$ matrix $-A$ such that $A + (-A) = 0$ and $(-A) + A = 0$.
5. $k(A + B) = kA + kB$
6. $(k + p)A = kA + pA$
Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let \(A, B \) and \(C \) be \(m \times n \) matrices, and let \(k \) and \(p \) be scalars.

1. \(A + B = B + A \)
2. \((A + B) + C = A + (B + C) \)
3. There is an \(m \times n \) matrix 0 such that \(A + 0 = A \) and 0 + \(A = A \).
4. For each \(A \) there is an \(m \times n \) matrix \(-A \) such that \(A + (-A) = 0 \) and \((-A) + A = 0 \).
5. \(k(A + B) = kA + kB \)
6. \((k + p)A = kA + pA \)
7. \((kp)A = k(pA) \)
Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

1. $A + B = B + A$
2. $(A + B) + C = A + (B + C)$
3. There is an $m \times n$ matrix 0 such that $A + 0 = A$ and $0 + A = A$.
4. For each A there is an $m \times n$ matrix $-A$ such that $A + (-A) = 0$ and $(-A) + A = 0$.
5. $k(A + B) = kA + kB$
6. $(k + p)A = kA + pA$
7. $(kp)A = k(pA)$
8. $1A = A$
Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^T, is the $n \times m$ matrix whose i^{th} row is the i^{th} column of A, $1 \leq i \leq n$.
Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^T, is the $n \times m$ matrix whose i^{th} row is the i^{th} column of A, $1 \leq i \leq n$.

Theorem (§2.1 Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.

1. A^T is an $n \times m$ matrix.
Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^T, is the $n \times m$ matrix whose i^{th} row is the i^{th} column of A, $1 \leq i \leq n$.

Theorem (§2.1 Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.

1. A^T is an $n \times m$ matrix.
2. $(A^T)^T = A.$
Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^T, is the $n \times m$ matrix whose i^{th} row is the i^{th} column of A, $1 \leq i \leq n$.

Theorem (§2.1 Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.

1. A^T is an $n \times m$ matrix.
2. $(A^T)^T = A$.
3. $(kA)^T = kA^T$.
Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^T, is the $n \times m$ matrix whose i^{th} row is the i^{th} column of A, $1 \leq i \leq n$.

Theorem (§2.1 Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.

1. A^T is an $n \times m$ matrix.
2. $(A^T)^T = A$.
3. $(kA)^T = kA^T$.
4. $(A + B)^T = A^T + B^T$.

Symmetric Matrices

Let $A = [a_{ij}]$ be an $m \times n$ matrix. The entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the main diagonal of A.
Symmetric Matrices

- Let $A = [a_{ij}]$ be an $m \times n$ matrix. The entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the main diagonal of A.
- The matrix A is called symmetric if and only if $A^T = A$. Note that this immediately implies that A is a square matrix.
Symmetric Matrices

Let $A = [a_{ij}]$ be an $m \times n$ matrix. The entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the \textbf{main diagonal} of A.

The matrix A is called \textbf{symmetric} if and only if $A^T = A$. Note that this immediately implies that A is a \textbf{square} matrix.

Examples

\[
\begin{bmatrix}
2 & -3 \\
-3 & 17
\end{bmatrix}, \quad \begin{bmatrix}
-1 & 0 & 5 \\
0 & 2 & 11 \\
5 & 11 & -3
\end{bmatrix}, \quad \begin{bmatrix}
0 & 2 & 5 & -1 \\
2 & 1 & -3 & 0 \\
5 & -3 & 2 & -7 \\
-1 & 0 & -7 & 4
\end{bmatrix}
\]

are symmetric matrices.
Example

Compute

\[
\begin{bmatrix}
3 & 1 & 8 \\
-2 & 0 & 4 \\
-1 & 1 & -1 \\
\end{bmatrix}
+ 2
\begin{bmatrix}
1 & 2 & 3 \\
9 & 0 & -5 \\
3 & 1 & 0 \\
\end{bmatrix}^T
\]
Example

Compute

\[
\begin{bmatrix}
3 & 1 & 8 \\
-2 & 0 & 4 \\
-1 & 1 & -1
\end{bmatrix}
+ 2
\begin{bmatrix}
1 & 2 & 3 \\
9 & 0 & -5 \\
3 & 1 & 0
\end{bmatrix}^T
= \begin{bmatrix}
3 & 1 & 8 \\
-2 & 0 & 4 \\
-1 & 1 & -1
\end{bmatrix}
+ \begin{bmatrix}
2 & 18 & 6 \\
4 & 0 & 2 \\
6 & -10 & 0
\end{bmatrix}
= \begin{bmatrix}
5 & 19 & 14 \\
2 & 0 & 6 \\
5 & -9 & -1
\end{bmatrix}
\]
Example

Show that $A + A^T$ is symmetric for any square matrix A.

The (i, j)-entry is $a_{ij} + a_{ji}$, which is the (j, i)-entry.
Example

Show that $A + A^T$ is symmetric for any square matrix A.

The (i, j)-entry is $a_{ij} + a_{ji}$, which is the same as the (j, i)-entry.
Example
Show that $A + A^T$ is symmetric for any square matrix A.

The (i, j)-entry is $a_{ij} + a_{ji}$, which is the same as the (j, i)-entry.

Example
Suppose $A = kA^T$ for some scalar k. Show that either $k = \pm 1$ or $A = 0$.
Example
Show that $A + A^T$ is symmetric for any square matrix A.

The (i, j)-entry is $a_{ij} + a_{ji}$, which is the same as the (j, i)-entry.

Example
Suppose $A = kA^T$ for some scalar k. Show that either $k = \pm 1$ or $A = 0$.

We have $A = kA^T = k(kA^T)^T = k^2(A^T)^T = k^2A$ so $(k^2 - 1)A = 0$. So either $k^2 = 1$ or $A = 0$.
Example

Find a condition on a, b, c so that the following system is consistent. When that equation is satisfied, find all solutions.

\[
\begin{align*}
 x_1 - 3x_2 + 2x_3 &= a \\
 2x_1 - 7x_2 + 4x_3 &= b \\
 4x_1 - 16x_2 + 8x_3 &= c
\end{align*}
\]
Example

Find a condition on a, b, c so that the following system is consistent. When that equation is satisfied, find all solutions.

\[
\begin{align*}
 x_1 - 3x_2 + 2x_3 &= a \\
 2x_1 - 7x_2 + 4x_3 &= b \\
 4x_1 - 16x_2 + 8x_3 &= c
\end{align*}
\]

\[
\begin{bmatrix} 1 & -3 & 2 & | & a \\ 2 & -7 & 4 & | & b \\ 4 & -16 & 8 & | & c \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 2 & | & a \\ 0 & -1 & 0 & | & b - 2a \\ 0 & -4 & 0 & | & c - 4a \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 0 & 2 & | & 7a - 3b \\ 0 & 1 & 0 & | & 2a - b \\ 0 & 0 & 0 & | & 4a - 4b + c \end{bmatrix}
\]

So $c = 4b - 4a$. In this case we have $x_3 = t$, $x_1 = 7a - 3b - 2t$ and $x_2 = 2a - b$.

Find a condition on a, b, c so that the following system is consistent. When that equation is satisfied, find all solutions.

\[
x_1 - 3x_2 + 2x_3 = a \\
2x_1 - 7x_2 + 4x_3 = b \\
4x_1 - 16x_2 + 8x_3 = c
\]

\[
\begin{bmatrix}
1 & -3 & 2 & a \\
2 & -7 & 4 & b \\
4 & -16 & 8 & c
\end{bmatrix} \rightarrow
\begin{bmatrix}
1 & -3 & 2 & a \\
0 & -1 & 0 & b - 2a \\
0 & -4 & 0 & c - 4a
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 2 & 7a - 3b \\
0 & 1 & 0 & 2a - b \\
0 & 0 & 0 & 4a - 4b + c
\end{bmatrix}
\]

So $c = 4b - 4a$. In this case we have $x_3 = t$, $x_1 = 7a - 3b - 2t$ and $x_2 = 2a - b$.
Summary

1. Matrices
2. Matrix Addition and Scalar Multiplication
3. Transposition and Symmetric Matrices
4. Examples