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Matrices - Basic Definitions and Notation

Let m and n be positive integers.

An m × n matrix is a rectangular array of numbers having m
rows and n columns. Such a matrix is said to have size m× n.

A row matrix is a 1× n matrix, and a column matrix (or
column) is an m × 1 matrix.

A square matrix is an m ×m matrix.

The (i , j)-entry of a matrix is the entry in row i and column j .

General notation for an m × n matrix, A:

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n

...
...

...
...

am1 am2 am3 . . . amn

 =
[
aij
]
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Matrices - Properties and Operations

1 Equality: two matrices are equal if and only if they have the
same size and the corresponding entries are equal.

2 Addition: matrices must have the same size; add
corresponding entries.

3 Scalar Multiplication: multiply each entry of the matrix by
the scalar.

4 Zero Matrix: an m × n matrix with all entries equal to zero.

5 Negative of a Matrix: for an m × n matrix A, its negative is
denoted −A and −A = (−1)A.

6 Subtraction: for m × n matrices A and B,
A− B = A + (−1)B.
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Matrix form for solutions to linear systems

The reduced row echlon form of the augmented matrix for the
system

x1 − 2x2 − x3 + 3x4 = 1
2x1 − 4x2 + x3 = 5
x1 − 2x2 + 2x3 − 3x4 = 4

is 1 −2 0 1 2
0 0 1 −2 1
0 0 0 0 0


leading to the solution

x1 = 2 + 2s − t
x2 = s
x3 = 1 + 2t
x4 = t

for parameters s and t.



Matrices Matrix Addition and Scalar Multiplication Transposition and Symmetric Matrices Examples

Matrix form for solutions to linear systems

x1 = 2 + 2s − t
x2 = s
x3 = 1 + 2t
x4 = t

can be expressed as


x1
x2
x3
x4

 =


2 + 2s − t
s
1 + 2t
t

.

But 
2 + 2s − t

s
1 + 2t

t

 =


2
0
1
0

+ s


2
1
0
0

+ t


−1

0
2
1


Therefore, 

x1
x2
x3
x4

 =


2
0
1
0

+ s


2
1
0
0

+ t


−1

0
2
1


for parameters s and t.
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Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be m × n matrices, and let k and p be scalars.

1 A + B = B + A

2 (A + B) + C = A + (B + C )

3 There is an m × n matrix 0 such that A + 0 = A and
0 + A = A.

4 For each A there is an m × n matrix −A such that
A + (−A) = 0 and (−A) + A = 0.

5 k(A + B) = kA + kB

6 (k + p)A = kA + pA

7 (kp)A = k(pA)

8 1A = A
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Matrix Transposition

If A is an m × n matrix, then its transpose, denoted AT , is the

n ×m matrix whose ith row is the ith column of A, 1 ≤ i ≤ n.

Theorem (§2.1 Theorem 2)

Let A and B be m × n matrices, and let k be a scalar.

1 AT is an n ×m matrix.

2 (AT )T = A.

3 (kA)T = kAT .

4 (A + B)T = AT + BT .
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Symmetric Matrices

Let A = [aij ] be an m × n matrix. The entries a11, a22, a33, . . .
are called the main diagonal of A.

The matrix A is called symmetric if and only if AT = A. Note
that this immediately implies that A is a square matrix.

Examples

[
2 −3
−3 17

]
,

−1 0 5
0 2 11
5 11 −3

 ,


0 2 5 −1
2 1 −3 0
5 −3 2 −7
−1 0 −7 4


are symmetric matrices.
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Example

Compute  3 1 8
−2 0 4
−1 1 −1

+ 2

1 2 3
9 0 −5
3 1 0

T

=

 3 1 8
−2 0 4
−1 1 −1

+

2 18 6
4 0 2
6 −10 0


=

5 19 14
2 0 6
5 −9 −1
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Example

Show that A + AT is symmetric for any square matrix A.

The (i , j)-entry is aij + aji , which is the same as the (j , i)-entry.

Example

Suppose A = kAT for some scalar k . Show that either k = ±1 or
A = 0.

We have A = kAT = k(kAT )T = k2(AT )T = k2A so
(k2 − 1)A = 0. So either k2 = 1 or A = 0.
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Example

Find a condition on a, b, c so that the following system is
consistent. When that equation is satisfied, find all solutions.

x1 − 3x2 + 2x3 = a

2x1 − 7x2 + 4x3 = b

4x1 − 16x2 + 8x3 = c

1 −3 2 a
2 −7 4 b
4 −16 8 c

→
1 −3 2 a

0 −1 0 b − 2a
0 −4 0 c − 4a


→

1 0 2 7a− 3b
0 1 0 2a− b
0 0 0 4a− 4b + c


So c = 4b − 4a. In this case we have x3 = t, x1 = 7a− 3b − 2t

and x2 = 2a− b.
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