Linear Methods (Math 211) - Lecture 4, §2.1

(with slides adapted from K. Seyffarth)

David Roe

September 16, 2013

Recall

Last time:
(1) Gaussian elimination
(2) Homogeneous systems - linear combinations, qualitative behavior and basic solutions

Today

(1) Matrices
(2) Matrix Addition and Scalar Multiplication
(3) Transposition and Symmetric Matrices
(4) Examples

Matrices - Basic Definitions and Notation

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.

Matrices - Basic Definitions and Notation

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.
- A row matrix is a $1 \times n$ matrix, and a column matrix (or column) is an $m \times 1$ matrix.

Matrices - Basic Definitions and Notation

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.
- A row matrix is a $1 \times n$ matrix, and a column matrix (or column) is an $m \times 1$ matrix.
- A square matrix is an $m \times m$ matrix.

Matrices - Basic Definitions and Notation

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.
- A row matrix is a $1 \times n$ matrix, and a column matrix (or column) is an $m \times 1$ matrix.
- A square matrix is an $m \times m$ matrix.
- The (i, j)-entry of a matrix is the entry in row i and column j.

Matrices - Basic Definitions and Notation

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.
- A row matrix is a $1 \times n$ matrix, and a column matrix (or column) is an $m \times 1$ matrix.
- A square matrix is an $m \times m$ matrix.
- The (i, j)-entry of a matrix is the entry in row i and column j.

General notation for an $m \times n$ matrix, A :

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right]=\left[a_{i j}\right]
$$

Matrices - Properties and Operations

(1) Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.

Matrices - Properties and Operations

(1) Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
(2) Addition: matrices must have the same size; add corresponding entries.

Matrices - Properties and Operations

(1) Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
(2) Addition: matrices must have the same size; add corresponding entries.
(3) Scalar Multiplication: multiply each entry of the matrix by the scalar.

Matrices - Properties and Operations

(1) Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
(2) Addition: matrices must have the same size; add corresponding entries.
(3) Scalar Multiplication: multiply each entry of the matrix by the scalar.
(1) Zero Matrix: an $m \times n$ matrix with all entries equal to zero.

Matrices - Properties and Operations

(1) Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
(2) Addition: matrices must have the same size; add corresponding entries.
(3) Scalar Multiplication: multiply each entry of the matrix by the scalar.
(1) Zero Matrix: an $m \times n$ matrix with all entries equal to zero.
(6) Negative of a Matrix: for an $m \times n$ matrix A, its negative is denoted $-A$ and $-A=(-1) A$.

Matrices - Properties and Operations

(1) Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
(2) Addition: matrices must have the same size; add corresponding entries.
(3) Scalar Multiplication: multiply each entry of the matrix by the scalar.
(1) Zero Matrix: an $m \times n$ matrix with all entries equal to zero.
(6) Negative of a Matrix: for an $m \times n$ matrix A, its negative is denoted $-A$ and $-A=(-1) A$.
(0) Subtraction: for $m \times n$ matrices A and B, $A-B=A+(-1) B$.

Matrix form for solutions to linear systems

The reduced row echlon form of the augmented matrix for the system

$$
\begin{array}{r}
x_{1}-2 x_{2}-x_{3}+3 x_{4}=1 \\
2 x_{1}-4 x_{2}+x_{3}=5 \\
x_{1}-2 x_{2}+2 x_{3}-3 x_{4}=4
\end{array}
$$

is

$$
\left[\begin{array}{rrrr|r}
1 & -2 & 0 & 1 & 2 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

leading to the solution

$$
\begin{aligned}
& x_{1}=2+2 s-t \\
& x_{2}=s \\
& x_{3}=1+2 t \\
& x_{4}=t
\end{aligned}
$$

for parameters s and t.

Matrix form for solutions to linear systems

$$
\left.\begin{array}{l}
\begin{array}{l}
x_{1}=2+2 s-t \\
x_{2}=s \\
x_{3}
\end{array}=1+2 t \quad \text { can be expressed as }\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}=t\right. \\
\text { But } \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
2+2 s-t \\
s \\
1+2 t \\
t
\end{array}\right] .
$$

Therefore,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{r}
-1 \\
0 \\
2 \\
1
\end{array}\right]
$$

for parameters s and t.

Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)
Let A, B and C be $m \times n$ matrices, and let k and p be scalars.
(1) $A+B=B+A$

Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$

Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) There is an $m \times n$ matrix 0 such that $A+0=A$ and $0+A=A$.

Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) There is an $m \times n$ matrix 0 such that $A+0=A$ and $0+A=A$.
(1) For each A there is an $m \times n$ matrix $-A$ such that $A+(-A)=0$ and $(-A)+A=0$.

Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) There is an $m \times n$ matrix 0 such that $A+0=A$ and $0+A=A$.
(9) For each A there is an $m \times n$ matrix $-A$ such that $A+(-A)=0$ and $(-A)+A=0$.
(0) $k(A+B)=k A+k B$

Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) There is an $m \times n$ matrix 0 such that $A+0=A$ and $0+A=A$.
(1) For each A there is an $m \times n$ matrix $-A$ such that $A+(-A)=0$ and $(-A)+A=0$.
(3) $k(A+B)=k A+k B$
(0) $(k+p) A=k A+p A$

Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) There is an $m \times n$ matrix 0 such that $A+0=A$ and $0+A=A$.
(9) For each A there is an $m \times n$ matrix $-A$ such that $A+(-A)=0$ and $(-A)+A=0$.
(3) $k(A+B)=k A+k B$
(0) $(k+p) A=k A+p A$
(3) $(k p) A=k(p A)$

Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) There is an $m \times n$ matrix 0 such that $A+0=A$ and $0+A=A$.
(9) For each A there is an $m \times n$ matrix $-A$ such that $A+(-A)=0$ and $(-A)+A=0$.
(3) $k(A+B)=k A+k B$
(0) $(k+p) A=k A+p A$
(3) $(k p) A=k(p A)$
(8) $1 A=A$

Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^{T}, is the $n \times m$ matrix whose $i^{\text {th }}$ row is the $i^{\text {th }}$ column of $A, 1 \leq i \leq n$.

Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^{T}, is the $n \times m$ matrix whose $i^{\text {th }}$ row is the $i^{\text {th }}$ column of $A, 1 \leq i \leq n$.

Theorem (§2.1 Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.
(1) A^{T} is an $n \times m$ matrix.

Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^{T}, is the $n \times m$ matrix whose $i^{\text {th }}$ row is the $i^{\text {th }}$ column of $A, 1 \leq i \leq n$.

Theorem (§2.1 Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.
(1) A^{T} is an $n \times m$ matrix.
(2) $\left(A^{T}\right)^{T}=A$.

Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^{T}, is the $n \times m$ matrix whose $i^{\text {th }}$ row is the $i^{\text {th }}$ column of $A, 1 \leq i \leq n$.

Theorem (§2.1 Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.
(1) A^{T} is an $n \times m$ matrix.
(2) $\left(A^{T}\right)^{T}=A$.
(3) $(k A)^{T}=k A^{T}$.

Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^{T}, is the $n \times m$ matrix whose $i^{\text {th }}$ row is the $i^{\text {th }}$ column of $A, 1 \leq i \leq n$.

Theorem (§2.1 Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.
(1) A^{T} is an $n \times m$ matrix.
(2) $\left(A^{T}\right)^{T}=A$.
(3) $(k A)^{T}=k A^{T}$.
(9) $(A+B)^{T}=A^{T}+B^{T}$.

Symmetric Matrices

- Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix. The entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the main diagonal of A.

Symmetric Matrices

- Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix. The entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the main diagonal of A.
- The matrix A is called symmetric if and only if $A^{T}=A$. Note that this immediately implies that A is a square matrix.

Symmetric Matrices

- Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix. The entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the main diagonal of A.
- The matrix A is called symmetric if and only if $A^{T}=A$. Note that this immediately implies that A is a square matrix.

Examples

$$
\left[\begin{array}{rr}
2 & -3 \\
-3 & 17
\end{array}\right],\left[\begin{array}{rrr}
-1 & 0 & 5 \\
0 & 2 & 11 \\
5 & 11 & -3
\end{array}\right],\left[\begin{array}{rrrr}
0 & 2 & 5 & -1 \\
2 & 1 & -3 & 0 \\
5 & -3 & 2 & -7 \\
-1 & 0 & -7 & 4
\end{array}\right]
$$

are symmetric matrices.

Example

Compute

$$
\left[\begin{array}{rrr}
3 & 1 & 8 \\
-2 & 0 & 4 \\
-1 & 1 & -1
\end{array}\right]+2\left[\begin{array}{rrr}
1 & 2 & 3 \\
9 & 0 & -5 \\
3 & 1 & 0
\end{array}\right]^{T}
$$

Example

Compute

$$
\left[\begin{array}{rrr}
3 & 1 & 8 \\
-2 & 0 & 4 \\
-1 & 1 & -1
\end{array}\right]+2\left[\begin{array}{rrr}
1 & 2 & 3 \\
9 & 0 & -5 \\
3 & 1 & 0
\end{array}\right]^{T}
$$

$$
=\left[\begin{array}{rrr}
3 & 1 & 8 \\
-2 & 0 & 4 \\
-1 & 1 & -1
\end{array}\right]+\left[\begin{array}{rrr}
2 & 18 & 6 \\
4 & 0 & 2 \\
6 & -10 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{rrr}
5 & 19 & 14 \\
2 & 0 & 6 \\
5 & -9 & -1
\end{array}\right]
$$

Example

Show that $A+A^{T}$ is symmetric for any square matrix A.

Example

Show that $A+A^{T}$ is symmetric for any square matrix A.
The (i, j)-entry is $a_{i j}+a_{j i}$, which is the same as the (j, i)-entry.

Example

Show that $A+A^{T}$ is symmetric for any square matrix A.
The (i, j)-entry is $a_{i j}+a_{j i}$, which is the same as the (j, i)-entry.

Example

Suppose $A=k A^{T}$ for some scalar k. Show that either $k= \pm 1$ or $A=0$.

Example

Show that $A+A^{T}$ is symmetric for any square matrix A.
The (i, j)-entry is $a_{i j}+a_{j i}$, which is the same as the (j, i)-entry.

Example

Suppose $A=k A^{T}$ for some scalar k. Show that either $k= \pm 1$ or $A=0$.

We have $A=k A^{T}=k\left(k A^{T}\right)^{T}=k^{2}\left(A^{T}\right)^{T}=k^{2} A$ so $\left(k^{2}-1\right) A=0$. So either $k^{2}=1$ or $A=0$.

Example

Find a condition on a, b, c so that the following system is consistent. When that equation is satisfied, find all solutions.

$$
\begin{aligned}
x_{1}-3 x_{2}+2 x_{3} & =a \\
2 x_{1}-7 x_{2}+4 x_{3} & =b \\
4 x_{1}-16 x_{2}+8 x_{3} & =c
\end{aligned}
$$

Example

Find a condition on a, b, c so that the following system is consistent. When that equation is satisfied, find all solutions.

$$
\begin{aligned}
x_{1}-3 x_{2}+2 x_{3} & =a \\
2 x_{1}-7 x_{2}+4 x_{3} & =b \\
4 x_{1}-16 x_{2}+8 x_{3} & =c
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & -3 & 2 & a \\
2 & -7 & 4 & b \\
4 & -16 & 8 & c
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -3 & 2 & a \\
0 & -1 & 0 & b-2 a \\
0 & -4 & 0 & c-4 a
\end{array}\right] } \\
\rightarrow & {\left[\begin{array}{rrr|r}
1 & 0 & 2 & 7 a-3 b \\
0 & 1 & 0 & 2 a-b \\
0 & 0 & 0 & 4 a-4 b+c
\end{array}\right] }
\end{aligned}
$$

Example

Find a condition on a, b, c so that the following system is consistent. When that equation is satisfied, find all solutions.

$$
\begin{aligned}
x_{1}-3 x_{2}+2 x_{3} & =a \\
2 x_{1}-7 x_{2}+4 x_{3} & =b \\
4 x_{1}-16 x_{2}+8 x_{3} & =c
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & -3 & 2 & a \\
2 & -7 & 4 & b \\
4 & -16 & 8 & c
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -3 & 2 & a \\
0 & -1 & 0 & b-2 a \\
0 & -4 & 0 & c-4 a
\end{array}\right] } \\
\rightarrow & {\left[\begin{array}{rrr|r}
1 & 0 & 2 & 7 a-3 b \\
0 & 1 & 0 & 2 a-b \\
0 & 0 & 0 & 4 a-4 b+c
\end{array}\right] }
\end{aligned}
$$

So $c=4 b-4 a$. In this case we have $x_{3}=t, x_{1}=7 a-3 b-2 t$ and $x_{2}=2 a-b$.

Summary

(1) Matrices
(2) Matrix Addition and Scalar Multiplication
(3) Transposition and Symmetric Matrices
(4) Examples

