Matrices	Matrix Addition and Scalar Multiplication	Transposition and Symmetric Matrices	Examp
0000	0	00	0000

Linear Methods (Math 211) - Lecture 4, §2.1

(with slides adapted from K. Seyffarth)

David Roe

September 16, 2013

Matrices	Matrix Addition	and	Scalar	Multiplication
0000	0			

Examples 0000

Last time:

Recall

- **1** Gaussian elimination
- Observation of the second s

Matrices
0000

Examples 0000

2 Matrix Addition and Scalar Multiplication

3 Transposition and Symmetric Matrices

Matrices	Matrix	Addition	and	Scalar	Multiplicatio
0000	0				

Examples 0000

Matrices - Basic Definitions and Notation

Let m and n be positive integers.

• An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.

Matrices	Matrix	Addition	and	Scalar	Multiplica
0000	0				

Examples 0000

Matrices - Basic Definitions and Notation

Let m and n be positive integers.

- An m × n matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size m × n.
- A row matrix is a 1 × n matrix, and a column matrix (or column) is an $m \times 1$ matrix.

atrices	Matrix	Addition	and	Scalar	Multip
000	0				

Μ

Transposition and Symmetric Matrices

Examples 0000

Matrices - Basic Definitions and Notation

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $m \times n$.
- A row matrix is a 1 × n matrix, and a column matrix (or column) is an $m \times 1$ matrix.
- A square matrix is an $m \times m$ matrix.

latrices	Matrix	Addition	and	Scalar	Multiplication
000	0				

Ν

Transposition and Symmetric Matrices

Examples 0000

Matrices - Basic Definitions and Notation

Let *m* and *n* be positive integers.

- An m × n matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size m × n.
- A row matrix is a 1 × n matrix, and a column matrix (or column) is an $m \times 1$ matrix.
- A square matrix is an $m \times m$ matrix.
- The (*i*, *j*)-entry of a matrix is the entry in row *i* and column *j*.

Matr	ices
000	0

Transposition and Symmetric Matrices

Examples 0000

Matrices - Basic Definitions and Notation

Let m and n be positive integers.

- An m × n matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size m × n.
- A row matrix is a 1 × n matrix, and a column matrix (or column) is an $m \times 1$ matrix.
- A square matrix is an $m \times m$ matrix.

• The (i, j)-entry of a matrix is the entry in row i and column j. General notation for an $m \times n$ matrix, A:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}$$

Examples 0000

Matrices - Properties and Operations

• **Equality:** two matrices are equal if and only if they have the same size and the corresponding entries are equal.

Examples 0000

- **Equality:** two matrices are equal if and only if they have the same size and the corresponding entries are equal.
- Addition: matrices must have the same size; add corresponding entries.

Examples 0000

- **Equality:** two matrices are equal if and only if they have the same size and the corresponding entries are equal.
- Addition: matrices must have the same size; add corresponding entries.
- Scalar Multiplication: multiply each entry of the matrix by the scalar.

latrices	Matrix	Addition	${\sf and}$	Scalar	Multiplication	
0 00	0					

Ν

Examples 0000

- **Equality:** two matrices are equal if and only if they have the same size and the corresponding entries are equal.
- Addition: matrices must have the same size; add corresponding entries.
- Scalar Multiplication: multiply each entry of the matrix by the scalar.
- **3 Zero Matrix:** an $m \times n$ matrix with all entries equal to zero.

Examples 0000

- Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
- Addition: matrices must have the same size; add corresponding entries.
- Scalar Multiplication: multiply each entry of the matrix by the scalar.
- **3 Zero Matrix:** an $m \times n$ matrix with all entries equal to zero.
- Solution Solution Solution → Solution Solution Solution → Solu

Examples 0000

- **Equality:** two matrices are equal if and only if they have the same size and the corresponding entries are equal.
- Addition: matrices must have the same size; add corresponding entries.
- Scalar Multiplication: multiply each entry of the matrix by the scalar.
- **3 Zero Matrix:** an $m \times n$ matrix with all entries equal to zero.
- Solution Solution Solution → Solution Solution Solution → Solu
- **()** Subtraction: for $m \times n$ matrices A and B,
 - A-B=A+(-1)B.

Matrices	Matrix	Addition	${\sf and}$	Scalar	Multiplication	
0000	0					

Examples 0000

Matrix form for solutions to linear systems

The reduced row echlon form of the augmented matrix for the system

is

$$\begin{bmatrix} 1 & -2 & 0 & 1 & | & 2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

leading to the solution

$$\begin{array}{rcl}
x_1 &=& 2+2s-t \\
x_2 &=& s \\
x_3 &=& 1+2t \\
x_4 &=& t
\end{array}$$

for parameters s and t.

Matrices	Matrix	Addition	${\sf and}$	Scalar	Multiplication	
0000	0					

Examples 0000

Matrix form for solutions to linear systems

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$

for parameters s and t.

Transposition and Symmetric Matrices

Examples 0000

Matrix Addition and Scalar Multiplication

Theorem ($\S2.1$ Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

A+B=B+A

Transposition and Symmetric Matrices

Examples 0000

Matrix Addition and Scalar Multiplication

Theorem ($\S2.1$ Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

- A + B = B + A
- (A + B) + C = A + (B + C)

Transposition and Symmetric Matrices

Examples 0000

Matrix Addition and Scalar Multiplication

Theorem ($\S2.1$ Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

- A + B = B + A
- **②** (A + B) + C = A + (B + C)
- So There is an $m \times n$ matrix 0 such that A + 0 = A and 0 + A = A.

Transposition and Symmetric Matrices

Examples 0000

Matrix Addition and Scalar Multiplication

Theorem ($\S2.1$ Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

- A + B = B + A
- **②** (A+B) + C = A + (B + C)

So There is an $m \times n$ matrix 0 such that A + 0 = A and 0 + A = A.

• For each A there is an $m \times n$ matrix -A such that A + (-A) = 0 and (-A) + A = 0.

Transposition and Symmetric Matrices

Examples 0000

Matrix Addition and Scalar Multiplication

Theorem ($\S2.1$ Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

- A + B = B + A
- (A + B) + C = A + (B + C)

So There is an $m \times n$ matrix 0 such that A + 0 = A and 0 + A = A.

- For each A there is an $m \times n$ matrix -A such that A + (-A) = 0 and (-A) + A = 0.
- (A + B) = kA + kB

Transposition and Symmetric Matrices

Examples 0000

Matrix Addition and Scalar Multiplication

Theorem ($\S2.1$ Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

- A+B=B+A
- (A + B) + C = A + (B + C)

So There is an $m \times n$ matrix 0 such that A + 0 = A and 0 + A = A.

- For each A there is an $m \times n$ matrix -A such that A + (-A) = 0 and (-A) + A = 0.
- (A + B) = kA + kB
- (k + p)A = kA + pA

Transposition and Symmetric Matrices

Examples 0000

Matrix Addition and Scalar Multiplication

Theorem ($\S2.1$ Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

A+B=B+A

$$(A+B) + C = A + (B+C)$$

So There is an $m \times n$ matrix 0 such that A + 0 = A and 0 + A = A.

- For each A there is an $m \times n$ matrix -A such that A + (-A) = 0 and (-A) + A = 0.
- (A + B) = kA + kB

$$(k+p)A = kA + pA$$

(kp)A = k(pA)

Transposition and Symmetric Matrices

Examples 0000

Matrix Addition and Scalar Multiplication

Theorem ($\S2.1$ Theorem 1)

Let A, B and C be $m \times n$ matrices, and let k and p be scalars.

- A+B=B+A
- **②** (A+B) + C = A + (B + C)

So There is an $m \times n$ matrix 0 such that A + 0 = A and 0 + A = A.

- For each A there is an $m \times n$ matrix -A such that A + (-A) = 0 and (-A) + A = 0.
- (A + B) = kA + kB
- (k + p)A = kA + pA
- (kp)A = k(pA)

 $\mathbf{0} \ \mathbf{1} \mathbf{A} = \mathbf{A}$

Matrices	Matrix Addition	and Scal	ar Multiplication
0000	0		

Examples 0000

Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^T , is the $n \times m$ matrix whose i^{th} row is the i^{th} column of A, $1 \le i \le n$.

Matrices	Matrix	Addition	${\sf and}$	Scalar	Multiplication
0000	0				

Examples 0000

Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^T , is the $n \times m$ matrix whose i^{th} row is the i^{th} column of A, $1 \le i \le n$.

Theorem ($\S2.1$ Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.

• A^T is an $n \times m$ matrix.

Matrices	Matrix Addition and Scalar Multiplication
0000	0

Examples 0000

Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^T , is the $n \times m$ matrix whose i^{th} row is the i^{th} column of A, $1 \le i \le n$.

Theorem ($\S2.1$ Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.

•
$$A^T$$
 is an $n \times m$ matrix.

$$(A^T)^T = A$$

Matrices	Matrix Addition and Scalar Multiplication
0000	0

Examples 0000

Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^T , is the $n \times m$ matrix whose i^{th} row is the i^{th} column of A, $1 \le i \le n$.

Theorem ($\S2.1$ Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.

•
$$A^T$$
 is an $n \times m$ matrix.

$$(A^T)^T = A.$$

$$(kA)^T = kA^T.$$

Matrices	Matrix Addition and Scalar Multiplication
0000	0

Examples 0000

Matrix Transposition

If A is an $m \times n$ matrix, then its transpose, denoted A^T , is the $n \times m$ matrix whose i^{th} row is the i^{th} column of A, $1 \le i \le n$.

Theorem ($\S2.1$ Theorem 2)

Let A and B be $m \times n$ matrices, and let k be a scalar.

•
$$A^T$$
 is an $n \times m$ matrix.

$$(A^T)^T = A.$$

$$(kA)^T = kA^T.$$

$$(A+B)^T = A^T + B^T.$$

Matrices	Matrix	Addition	${\sf and}$	Scalar	Multiplication
0000	0				

Examples 0000

Symmetric Matrices

• Let $A = [a_{ij}]$ be an $m \times n$ matrix. The entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the main diagonal of A.

Symmetric Matrices

- Let $A = [a_{ij}]$ be an $m \times n$ matrix. The entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the main diagonal of A.
- The matrix A is called symmetric if and only if $A^T = A$. Note that this immediately implies that A is a square matrix.

Matrices	Matrix Addition and Scalar Multiplication
0000	0

Examples 0000

Symmetric Matrices

- Let $A = [a_{ij}]$ be an $m \times n$ matrix. The entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the main diagonal of A.
- The matrix A is called symmetric if and only if $A^T = A$. Note that this immediately implies that A is a square matrix.

Matrices	Matrix Addition and Scalar Multiplication	Т
0000	0	0

Examples •000

Example

Compute

$$\begin{bmatrix} 3 & 1 & 8 \\ -2 & 0 & 4 \\ -1 & 1 & -1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 2 & 3 \\ 9 & 0 & -5 \\ 3 & 1 & 0 \end{bmatrix}^{T}$$

Matrices	Matrix Addition and Scalar Multiplication
0000	0

Examples •000

Example

Compute

$$\begin{bmatrix} 3 & 1 & 8 \\ -2 & 0 & 4 \\ -1 & 1 & -1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 2 & 3 \\ 9 & 0 & -5 \\ 3 & 1 & 0 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} 3 & 1 & 8 \\ -2 & 0 & 4 \\ -1 & 1 & -1 \end{bmatrix} + \begin{bmatrix} 2 & 18 & 6 \\ 4 & 0 & 2 \\ 6 & -10 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 19 & 14 \\ 2 & 0 & 6 \\ 5 & -9 & -1 \end{bmatrix}$$

Matrices	Matrix Addition and Scalar Multiplication	Transposition and Symmetric Matrices	Examples
0000	0	00	0000

Show that $A + A^T$ is symmetric for any square matrix A.

Matrices	Matrix Addition and Scalar Multiplication	Transposition and Symmetric Matrices	Examples
0000	o		0000

Show that $A + A^T$ is symmetric for any square matrix A.

The (i, j)-entry is $a_{ij} + a_{ji}$, which is the same as the (j, i)-entry.

Matrices	Matrix Addition and Scalar Multiplication	Transposition and Symmetric Matrices	Examples
0000	0	00	0000

Show that $A + A^{T}$ is symmetric for any square matrix A.

The (i, j)-entry is $a_{ij} + a_{ji}$, which is the same as the (j, i)-entry.

Example

Suppose $A = kA^T$ for some scalar k. Show that either $k = \pm 1$ or A = 0.

Matrices	Matrix Addition and Scalar Multiplication	Transposition and Symmetric Matrices	Examples
0000	0	00	0000

Show that $A + A^{T}$ is symmetric for any square matrix A.

The (i, j)-entry is $a_{ij} + a_{ji}$, which is the same as the (j, i)-entry.

Example

Suppose $A = kA^T$ for some scalar k. Show that either $k = \pm 1$ or A = 0.

We have
$$A = kA^{T} = k(kA^{T})^{T} = k^{2}(A^{T})^{T} = k^{2}A$$
 so $(k^{2} - 1)A = 0$. So either $k^{2} = 1$ or $A = 0$.

Matric	es
0000	

Examples

Example

Find a condition on a, b, c so that the following system is consistent. When that equation is satisfied, find all solutions.

 $x_1 - 3x_2 + 2x_3 = a$ $2x_1 - 7x_2 + 4x_3 = b$ $4x_1 - 16x_2 + 8x_3 = c$

Matric	es
0000	

Examples

Example

Find a condition on a, b, c so that the following system is consistent. When that equation is satisfied, find all solutions.

$$x_1 - 3x_2 + 2x_3 = a$$

$$2x_1 - 7x_2 + 4x_3 = b$$

$$4x_1 - 16x_2 + 8x_3 = c$$

$$\begin{bmatrix} 1 & -3 & 2 & | & a \\ 2 & -7 & 4 & b \\ 4 & -16 & 8 & | & c \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 2 & | & a \\ 0 & -1 & 0 & | & b-2a \\ 0 & -4 & 0 & | & c-4a \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 2 & | & 7a-3b \\ 0 & 1 & 0 & | & 2a-b \\ 0 & 0 & 0 & | & 4a-4b+c \end{bmatrix}$$

Matric	es
0000	

Example

Find a condition on a, b, c so that the following system is consistent. When that equation is satisfied, find all solutions.

$$x_1 - 3x_2 + 2x_3 = a$$

$$2x_1 - 7x_2 + 4x_3 = b$$

$$4x_1 - 16x_2 + 8x_3 = c$$

$$\begin{bmatrix} 1 & -3 & 2 & | & a \\ 2 & -7 & 4 & b \\ 4 & -16 & 8 & c \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 2 & | & a \\ 0 & -1 & 0 & | & b-2a \\ 0 & -4 & 0 & | & c-4a \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 2 & | & 7a-3b \\ 0 & 1 & 0 & | & 2a-b \\ 0 & 0 & 0 & | & 4a-4b+c \end{bmatrix}$$

So c = 4b - 4a. In this case we have $x_3 = t$, $x_1 = 7a - 3b - 2t$ and $x_2 = 2a - b$.

Matrices	Matrix Addition	and	Scalar	Multiplica
0000	0			

Summary

2 Matrix Addition and Scalar Multiplication

3 Transposition and Symmetric Matrices

4 Examples