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Recall

Last time:
@ Gaussian elimination

@ Homogeneous systems - linear combinations, qualitative
behavior and basic solutions



Today

© Matrices
© Matrix Addition and Scalar Multiplication

© Transposition and Symmetric Matrices

@ Examples
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Matrices - Basic Definitions and Notation

Let m and n be positive integers.

@ An m X n matrix is a rectangular array of numbers having m
rows and n columns. Such a matrix is said to have size m x n.

@ A row matrix is a 1 X n matrix, and a column matrix (or
column) is an m x 1 matrix.

@ A square matrix is an m X m matrix.
@ The (/,j)-entry of a matrix is the entry in row i and column j.

General notation for an m x n matrix, A:

ajy aw a3 ... ain

ani ano daz3 e don
— a a a e a — .
A= |31 ax a3 3n | = [aj]

dmli dm2 dm3 --- dmn|
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Matrices - Properties and Operations

@ Equality: two matrices are equal if and only if they have the
same size and the corresponding entries are equal.

@ Addition: matrices must have the same size; add
corresponding entries.

© Scalar Multiplication: multiply each entry of the matrix by
the scalar.

© Zero Matrix: an m x n matrix with all entries equal to zero.

© Negative of a Matrix: for an m x n matrix A, its negative is
denoted —A and —A = (—1)A.

@ Subtraction: for m X n matrices A and B,
A—B=A+(-1)B.
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Matrix form for solutions to linear systems

The reduced row echlon form of the augmented matrix for the

system
X1 — 2X2 — X3 + 3X4 =1
2x1 — 4 4+ x3 =
X1 — 20 + 2x3 — 3x4 = 4
is
1 -2 0 1]2
0O 01 -2]1
0 00 0|0
leading to the solution
X1 = 2+2s—t
Xo = S
x3 = 142t
X4 = t

for parameters s and t.
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Matrix form for solutions to linear systems

xg = 2+42s—t X1 2+42s—t
Xp = S X2 S
X — 1402t can be expressed as xa = |:1—|—2t
X, = t X4 t
But
24+2s—t 2 2 -1
s 0 1 0
142t| = |1 T o] T 2
t 0 0 1
Therefore,
X1 2 2 -1
X2 0 1 0
x| [ T o T 2
X4 0 0 1

for parameters s and t.
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Matrix Addition and Scalar Multiplication

Theorem (§2.1 Theorem 1)
Let A, B and C be m x n matrices, and let k and p be scalars.
Q@ A+B=B+A
@ (A+B)+C=A+(B+0C)
© There is an m x n matrix 0 such that A+ 0= A and
0+ A=A

© For each A there is an m X n matrix —A such that
A+ (=A)=0and (-A)+A=0.

@ k(A+ B)=kA+ kB

Q (k+p)A=kA+ pA

Q@ (kp)A = k(pA)

Q 1A=A
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If Ais an m x n matrix, then its transpose, denoted AT is the
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n X m matrix whose /"' row is the ith columnof A, 1 <j<n.
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Matrix Transposition

If Ais an m x n matrix, then its transpose, denoted AT is the

th

n X m matrix whose /"' row is the ith columnof A, 1 <j<n.

Theorem (§2.1 Theorem 2)

Let A and B be m x n matrices, and let k be a scalar.

@ A’ isan nx m matrix.
Q@ (A")T =A

© (kA)T = kAT,

Q@ (A+B)T=AT +BT.
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Symmetric Matrices

o Let A= [aj;] be an m x n matrix. The entries a1, a», as3, ...

are called the main diagonal of A.
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Symmetric Matrices

o Let A= [aj;] be an m x n matrix. The entries a1, a», as3, ...
are called the main diagonal of A.

@ The matrix A is called symmetric if and only if AT = A. Note
that this immediately implies that A is a square matrix.

0 2 5 -1
2 -3 _égli 2 1 -3 0
-3 17|’ 511_3’ 5 -3 2 -7
-1 0 -7 4

are symmetric matrices.
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Show that A+ AT is symmetric for any square matrix A.
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Show that A+ AT is symmetric for any square matrix A.

The (i, j)-entry is aj; + aj;, which is the same as the (j, i)-entry.
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Show that A+ AT is symmetric for any square matrix A.

The (i, j)-entry is aj; + aj;, which is the same as the (j, i)-entry.

Suppose A = kAT for some scalar k. Show that either k = +1 or
A=0.




Examples
0®00

Show that A+ AT is symmetric for any square matrix A. l

The (i, j)-entry is aj; + aj;, which is the same as the (j, i)-entry.

Suppose A = kAT for some scalar k. Show that either k = +1 or
A=0.

We have A = kAT = k(kAT)T = k2(AT)T = k?A so
(k> —1)A = 0. So either k» =1 or A=0.
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Example

Find a condition on a, b, ¢ so that the following system is
consistent. When that equation is satisfied, find all solutions.

x1 —3x0 4+ 2x3 = a
2x1 —Txp+4x3=0b
4x; — 16x0 + 8x3 = ¢
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Find a condition on a, b, ¢ so that the following system is

consistent. When that equation is satisfied, find all solutions.

x1 —3x0 4+ 2x3 = a
2x1 —Txp+4x3=0b
4x; — 16x0 + 8x3 = ¢

1 -3 2]|a 1 -3 2 a
2 —7 4|b| —- |0 -1 0|b—2a
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Find a condition on a, b, ¢ so that the following system is
consistent. When that equation is satisfied, find all solutions.

x1 —3x0 4+ 2x3 = a
2x1 —Txp+4x3=0b
4x; — 16x0 + 8x3 = ¢

1 -3 2]|a 1 -3 2 a
2 —7 4|b| —- |0 -1 0|b—2a
|4 —16 8| c 0 -4 0|c—4a
[1 0 2 7a—3b

— 10 1 0 2a—b
0 0 0|4a—4b+c

So ¢ = 4b — 4a. In this case we have x3 = t, xy = 7a— 3b — 2t
and x, = 2a — b.
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Summary

© Matrices
© Matrix Addition and Scalar Multiplication

© Transposition and Symmetric Matrices

@ Examples
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