Linear Methods (Math 211) - Lecture 3

David Roe

September 13, 2013

Recall

Last time:
(1) Defined row echelon and reduced row echelon form
(2) Defined rank
(3) Gaussian elimination - a way to reduce a matrix to echelon form

Today

(1) More Gaussian Elimination
(2) Homogeneous Systems

$$
\left[\begin{array}{rrrrr}
0 & 0 & 3 & -15 & 3 \\
-2 & -10 & -9 & 53 & -15 \\
-2 & -10 & -11 & 63 & -16 \\
1 & 5 & 2 & -14 & 5
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
0 & 0 & 3 & -15 & 3 \\
-2 & -10 & -9 & 53 & -15 \\
-2 & -10 & -11 & 63 & -16 \\
1 & 5 & 2 & -14 & 5
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
-2 & -10 & -9 & 53 & -15 \\
0 & 0 & 3 & -15 & 3 \\
-2 & -10 & -11 & 63 & -16 \\
1 & 5 & 2 & -14 & 5
\end{array}\right]}
\end{aligned}
$$

Swap $1^{\text {st }}$ and $2^{\text {nd }}$ rows

$$
\left[\begin{array}{rrrrr}
-2 & -10 & -9 & 53 & -15 \\
0 & 0 & 3 & -15 & 3 \\
-2 & -10 & -11 & 63 & -16 \\
1 & 5 & 2 & -14 & 5
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
-2 & -10 & -9 & 53 & -15 \\
0 & 0 & 3 & -15 & 3 \\
-2 & -10 & -11 & 63 & -16 \\
1 & 5 & 2 & -14 & 5
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & 5 & { }^{9} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 3 & -15 & 3 \\
-2 & -10 & -11 & 63 & -16 \\
1 & 5 & 2 & -14 & 5
\end{array}\right]}
\end{aligned}
$$

Multiply $1^{\text {st }}$ row by $-\frac{1}{2}$

$$
\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 3 & -15 & 3 \\
-2 & -10 & -11 & 63 & -16 \\
1 & 5 & 2 & -14 & 5
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 3 & -15 & 3 \\
-2 & -10 & -11 & 63 & -16 \\
1 & 5 & 2 & -14 & 5
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 3 & -15 & 3 \\
0 & 0 & -2 & 10 & -1 \\
1 & 5 & 2 & -14 & 5
\end{array}\right]}
\end{aligned}
$$

Add 2 times $1^{\text {st }}$ row to $3^{\text {rd }}$ row

$$
\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 3 & -15 & 3 \\
0 & 0 & -2 & 10 & -1 \\
1 & 5 & 2 & -14 & 5
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 3 & -15 & 3 \\
0 & 0 & -2 & 10 & -1 \\
1 & 5 & 2 & -14 & 5
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 3 & -15 & 3 \\
0 & 0 & -2 & 10 & -1 \\
0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2}
\end{array}\right]}
\end{aligned}
$$

Add -1 times $1^{\text {st }}$ row to $4^{\text {th }}$ row

$$
\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 3 & -15 & 3 \\
0 & 0 & -2 & 10 & -1 \\
0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 3 & -15 & 3 \\
0 & 0 & -2 & 10 & -1 \\
0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2}
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 1 \\
0 & 0 & -2 & 10 & -1 \\
0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2}
\end{array}\right]}
\end{aligned}
$$

Multiply $2^{\text {nd }}$ row by $\frac{1}{3}$

$$
\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 1 \\
0 & 0 & -2 & 10 & -1 \\
0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 1 \\
0 & 0 & -2 & 10 & -1 \\
0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2}
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2}
\end{array}\right]}
\end{aligned}
$$

Add 2 times $2^{\text {nd }}$ row to $3^{\text {rd }}$ row

$$
\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2}
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Add $\frac{5}{2}$ times $2^{\text {nd }}$ row to $4^{\text {th }}$ row

$$
\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Add -1 times $3^{\text {rd }}$ row to $2^{\text {nd }}$ row

$$
\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & 0 \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Add $-\frac{15}{2}$ times $3^{\text {rd }}$ row to $1^{\text {st }}$ row

$$
\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & 0 \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 5 & \frac{9}{2} & -\frac{53}{2} & 0 \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lllrl}
1 & 5 & 0 & -4 & 0 \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Add $-\frac{9}{2}$ times $2^{\text {nd }}$ row to $1^{\text {st }}$ row

$$
\left[\begin{array}{rrrr|r}
1 & 5 & 0 & -4 & 0 \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(1) What is the rank of the matrix?

$$
\left[\begin{array}{rrrr|r}
1 & 5 & 0 & -4 & 0 \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(1) What is the rank of the matrix? 3 , since there are three leading 1 s .

$$
\left[\begin{array}{rrrr|r}
1 & 5 & 0 & -4 & 0 \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(1) What is the rank of the matrix? 3, since there are three leading 1 s .
(2) Does the system have any solutions?

$$
\left[\begin{array}{rrrr|r}
1 & 5 & 0 & -4 & 0 \\
0 & 0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(1) What is the rank of the matrix? 3 , since there are three leading 1 s .
(2) Does the system have any solutions?

No, since one of the rows represents $0=1$.

Homogeneous Systems

A linear system is homogeneous if every constant term is zero. For example,

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=0 \\
-x_{1}-5 x_{2}+x_{3}=0
\end{array}
$$

is homogeneous.

Homogeneous Systems

A linear system is homogeneous if every constant term is zero. For example,

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=0 \\
-x_{1}-5 x_{2}+x_{3}=0
\end{array}
$$

is homogeneous.

Any homogenous system has a trivial solution - all variables set to 0 .

Linear combinations

Homogeneous equations are special because their solutions have a very nice property.
Suppose $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$ are vectors and k is a scalar (i.e. a number). We set

$$
\mathbf{x}+\mathbf{y}=\left[\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right] \quad k \mathbf{x}=\left[\begin{array}{c}
k x_{1} \\
k x_{2} \\
\vdots \\
k x_{n}
\end{array}\right]
$$

A sum of scalar multiples of several vectors is called a linear combination; $r \mathbf{x}+s \mathbf{y}$ for any scalars r and s for example.

Linear combinations

You can also take linear combinations of more than two vectors. For example,

$$
2\left[\begin{array}{r}
3 \\
1 \\
-4
\end{array}\right]-\left[\begin{array}{r}
1 \\
0 \\
-5
\end{array}\right]+\left[\begin{array}{r}
-2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{r}
3 \\
3 \\
-1
\end{array}\right] .
$$

Solutions to Homogeneous Systems

Suppose that \mathbf{x} and \mathbf{y} are solutions to a homogeneous system. Then so is $r \mathbf{x}+s \mathbf{y}$ for any numbers r and s.
Why? Suppose that $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$ is an equation in the system. Then

$$
\begin{aligned}
a_{1}\left(r x_{1}+s y_{1}\right) & +\cdots+a_{n}\left(r x_{n}+s y_{n}\right) \\
& =r a_{1} x_{1}+s a_{1} y_{1}+\cdots+r a_{n} x_{n}+s a_{n} y_{n} \\
& =r\left(a_{1} x_{1}+\cdots a_{n} x_{n}\right)+s\left(a_{1} y_{1}+\cdots+a_{n} y_{n}\right) \\
& =r \cdot 0+s \cdot 0 \\
& =0
\end{aligned}
$$

So $r \mathbf{x}+s \mathbf{y}$ is a solution to each equation and thus to the whole system.

Basic solutions

In fact, every solution to a homogeneous system can be written uniquely in terms of basic solutions. The basic solutions can be computed using Gaussian elimination; there is one for each parameter.
If the system has n variables and rank r, then there are $n-r$ basic solutions.

Finding basic solutions

The first step in finding basic solutions is Gaussian elimination. Suppose we've done that, and we have the augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrrr|r}
1 & 0 & 6 & 0 & -3 & 0 & 1 & 0 \\
0 & 1 & -4 & 0 & -5 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 & 4 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& x_{3}=r \\
& x_{5}=s \\
& x_{7}=t
\end{aligned}
$$

Finding basic solutions

We can rewrite

$$
\begin{array}{ll}
x_{3}=r & x_{1}=-6 r+3 s-t \\
x_{5}=s & x_{2}=4 r+5 s-2 t \\
x_{7}=t & x_{4}=-4 s+t \\
& x_{6}=0
\end{array}
$$

as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=r\left[\begin{array}{r}
-6 \\
4 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{r}
3 \\
5 \\
0 \\
-4 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{r}
-1 \\
-2 \\
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right] .
$$

From the matrix,

$$
\left[\begin{array}{rrrrrrr|r}
1 & 0 & 6 & 0 & -3 & 0 & 1 & 0 \\
0 & 1 & -4 & 0 & -5 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 & 4 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

we can extract the basic solutions directly:

$$
\left[\begin{array}{r}
-6 \\
4 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
3 \\
5 \\
0 \\
-4 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
-2 \\
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Summary

(1) More Gaussian Elimination
(2) Homogeneous Systems

