Linear Methods (Math 211) - Lecture 3

David Roe

September 13, 2013

Recall

Last time:

- Defined row echelon and reduced row echelon form
- Optimized President Pre
- Gaussian elimination a way to reduce a matrix to echelon form

Today

1 More Gaussian Elimination

2 Homogeneous Systems

$$\begin{bmatrix} 0 & 0 & 3 & -15 & 3 \\ -2 & -10 & -9 & 53 & -15 \\ -2 & -10 & -11 & 63 & -16 \\ 1 & 5 & 2 & -14 & 5 \end{bmatrix}$$

Swap 1^{st} and 2^{nd} rows

$$\begin{bmatrix} -2 & -10 & -9 & 53 & -15 \\ 0 & 0 & 3 & -15 & 3 \\ -2 & -10 & -11 & 63 & -16 \\ 1 & 5 & 2 & -14 & 5 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -10 & -9 & 53 & -15 \\ 0 & 0 & 3 & -15 & 3 \\ -2 & -10 & -11 & 63 & -16 \\ 1 & 5 & 2 & -14 & 5 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 3 & -15 & 3 \\ -2 & -10 & -11 & 63 & -16 \\ 1 & 5 & 2 & -14 & 5 \end{bmatrix}$$

Multiply 1^{st} row by $-\frac{1}{2}$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 3 & -15 & 3 \\ -2 & -10 & -11 & 63 & -16 \\ 1 & 5 & 2 & -14 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 3 & -15 & 3 \\ -2 & -10 & -11 & 63 & -16 \\ 1 & 5 & 2 & -14 & 5 \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 3 & -15 & 3 \\ 0 & 0 & -2 & 10 & -1 \\ 1 & 5 & 2 & -14 & 5 \end{bmatrix}$$

Add 2 times $1^{\rm st}$ row to $3^{\rm rd}$ row

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 3 & -15 & 3 \\ 0 & 0 & -2 & 10 & -1 \\ 1 & 5 & 2 & -14 & 5 \end{bmatrix}$$

Add -1 times $1^{\rm st}$ row to $4^{\rm th}$ row

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 3 & -15 & 3 \\ 0 & 0 & -2 & 10 & -1 \\ 0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 3 & -15 & 3 \\ 0 & 0 & -2 & 10 & -1 \\ 0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2} \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 1 \\ 0 & 0 & -2 & 10 & -1 \\ 0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2} \end{bmatrix}$$

Multiply 2^{nd} row by $\frac{1}{3}$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 1 \\ 0 & 0 & -2 & 10 & -1 \\ 0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 1 \\ 0 & 0 & -\frac{2}{2} & 10 & -1 \\ 0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2} \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2} \end{bmatrix}$$

Add 2 times $2^{\rm nd}$ row to $3^{\rm rd}$ row

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & -\frac{5}{2} & \frac{25}{2} & -\frac{5}{2} \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Add $\frac{5}{2}$ times $2^{\rm nd}$ row to $4^{\rm th}$ row

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Add -1 times $3^{\rm rd}$ row to $2^{\rm nd}$ row

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & \frac{15}{2} \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & 0 \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Add
$$-\frac{15}{2}$$
 times 3^{rd} row to 1^{st} row

$$\begin{bmatrix} 1 & 5 & \frac{9}{2} & -\frac{53}{2} & 0 \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Add
$$-rac{9}{2}$$
 times $2^{
m nd}$ row to $1^{
m st}$ row

$$\begin{bmatrix} 1 & 5 & 0 & -4 & 0 \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

What is the rank of the matrix?

$$\begin{bmatrix} 1 & 5 & 0 & -4 & 0 \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

What is the rank of the matrix?3, since there are three leading 1s.

$$\begin{bmatrix} 1 & 5 & 0 & -4 & 0 \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- What is the rank of the matrix?3, since there are three leading 1s.
- Obes the system have any solutions?

[1	5	0	-4	0
0	0	1	-5	0
0	0	0	0	1
0	0	0	0	0

- What is the rank of the matrix?3, since there are three leading 1s.
- Does the system have any solutions?
 No, since one of the rows represents 0 = 1.

Homogeneous Systems

A linear system is homogeneous if every constant term is zero. For example,

$$x_1 + 2x_2 - x_3 = 0$$

$$-x_1 - 5x_2 + x_3 = 0$$

is homogeneous.

Homogeneous Systems

A linear system is homogeneous if every constant term is zero. For example,

$$x_1 + 2x_2 - x_3 = 0$$

$$-x_1 - 5x_2 + x_3 = 0$$

is homogeneous.

Any homogenous system has a trivial solution - all variables set to 0.

Linear combinations

Homogeneous equations are special because their solutions have a very nice property.

Suppose
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ are vectors and k is a scalar (i.e. a number). We set

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix} \qquad \qquad k\mathbf{x} = \begin{bmatrix} kx_1 \\ kx_2 \\ \vdots \\ kx_n \end{bmatrix}$$

A sum of scalar multiples of several vectors is called a linear combination; $r\mathbf{x} + s\mathbf{y}$ for any scalars r and s for example.

Linear combinations

You can also take linear combinations of more than two vectors. For example,

$$2\begin{bmatrix}3\\1\\-4\end{bmatrix} - \begin{bmatrix}1\\0\\-5\end{bmatrix} + \begin{bmatrix}-2\\1\\2\end{bmatrix} = \begin{bmatrix}3\\3\\-1\end{bmatrix}.$$

Solutions to Homogeneous Systems

Suppose that **x** and **y** are solutions to a homogeneous system. Then so is $r\mathbf{x} + s\mathbf{y}$ for any numbers r and s. Why? Suppose that $a_1x_1 + \cdots + a_nx_n = 0$ is an equation in the system. Then

$$a_1(rx_1 + sy_1) + \dots + a_n(rx_n + sy_n)$$

= $ra_1x_1 + sa_1y_1 + \dots + ra_nx_n + sa_ny_n$
= $r(a_1x_1 + \dots + a_nx_n) + s(a_1y_1 + \dots + a_ny_n)$
= $r \cdot 0 + s \cdot 0$
= 0

So $r\mathbf{x} + s\mathbf{y}$ is a solution to each equation and thus to the whole system.

Basic solutions

In fact, *every* solution to a homogeneous system can be written uniquely in terms of basic solutions. The basic solutions can be computed using Gaussian elimination; there is one for each parameter.

If the system has n variables and rank r, then there are n - r basic solutions.

Finding basic solutions

The first step in finding basic solutions is Gaussian elimination. Suppose we've done that, and we have the augmented matrix

$x_3 = r$	$x_1 = -6r + 3s - t$
$x_5 = s$	$x_2 = 4r + 5s - 2t$
$x_7 = t$	$x_4 = -4s + t$
	$x_6 = 0.$

Homogeneous Systems

Finding basic solutions

We can rewrite

$$x_{3} = r$$

$$x_{1} = -6r + 3s - t$$

$$x_{5} = s$$

$$x_{2} = 4r + 5s - 2t$$

$$x_{7} = t$$

$$x_{4} = -4s + t$$

$$x_{6} = 0$$

as

$$\begin{bmatrix} x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7 \end{bmatrix} = r \begin{bmatrix} -6\\4\\1\\0\\0\\0\\0 \end{bmatrix} + s \begin{bmatrix} 3\\5\\0\\-4\\1\\0\\0\\0 \end{bmatrix} + t \begin{bmatrix} -1\\-2\\0\\1\\0\\0\\0 \end{bmatrix}.$$

From the matrix,

we can extract the basic solutions directly:

$$\begin{bmatrix} -6\\4\\1\\0\\-4\\0\\-4\\0\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 3\\-2\\-2\\0\\1\\0\\0\\0\\0\\0\\1\end{bmatrix}$$

•

1 More Gaussian Elimination

2 Homogeneous Systems