Linear Methods (Math 211) - Lecture 2

David Roe

September 11, 2013

Last time:

- Linear Systems
- Matrices
- Geometric Perspective
- Parametric Form

Today

(1) Row Echelon Form
(2) Rank
(3) Gaussian Elimination

Row Echelon Form

A matrix is in row echelon form if
(1) All zero rows are at the bottom;
(2) The first nonzero entry from the left in each nonzero row is a 1 ;
(3) Each leading 1 is to the right of all leading 1 s in the rows above it.
A matrix is in reduced row echelon form if
(9) Each leading 1 is the only nonzero entry in its column.
$\left.\begin{array}{lll}\text { echelon form } & {\left[\begin{array}{lll}1 & * & * \\ 0 & 0 & 1\end{array}\right]}\end{array} \begin{array}{llll}0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right]$

Solving Systems in Reduced Echelon Form

A linear system in reduced row echelon form is easy to solve:

$$
\begin{aligned}
& {\left[\begin{array}{llll|l}
0 & 1 & 0 & 4 & 5 \\
0 & 0 & 1 & 7 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{llll}
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
5 \\
3 \\
0
\end{array}\right]} \\
& x_{2}+4 x_{4}=5 \quad x_{1}=s \\
& x_{3}+7 x_{4}=3 \quad x_{2}=5-4 t \\
& 0=0 \quad x_{3}=3-7 t \\
& x_{4}=t
\end{aligned}
$$

Solving Systems in Reduced Echelon Form

On the previous slide, x_{2} and x_{3} are leading variables, while x_{1} and x_{4} are nonleading variables. In general,
(1) If there is a row $\left[\begin{array}{llll|l}0 & 0 & \cdots & 0 & 1\end{array}\right]$ then the system is inconsistent, since this is the equation $0=1$.
(2) Otherwise, each nonleading variable yields one parameter, and you can immediately solve for the leading variables in terms of the parameters.

Rank

Suppose A is any matrix. From A, different sequences of row operations can reach different row-echelon matrices. But there is precisely one reduced row-echelon matrix obtainable from A by a sequence of row operations. This matrix is known as the reduced row echelon form of A.

However, all of the row echelon forms of A share a feature in common: they all have the same number of leading 1 s . This number is called the rank of A.

Note that if A has rank r, m rows and n columns. Then $r \leq n$ and $r \leq m$ (typo in book).

Rank

Theorem

Suppose a system of m equations in n variables is consistent, and that the rank of the augmented matrix is r.
(1) The set of solutions involves exactly $n-r$ parameters,
(2) If $r<n$, the system has infinitely many solutions,
(3) If $r=n$, the system has a unique solution.

$$
\left[\begin{array}{rrrrr}
7 & -38 & -31 & 10 & 21 \\
-2 & 11 & 9 & -3 & -6 \\
5 & -29 & -23 & 7 & 16
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
7 & -38 & -31 & 10 & 21 \\
-2 & 11 & 9 & -3 & -6 \\
5 & -29 & -23 & 7 & 16
\end{array}\right]} \\
& {\left[\begin{array}{rrcrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
-2 & 11 & 9 & -3 & -6 \\
5 & -29 & -23 & 7 & 16
\end{array}\right]}
\end{aligned}
$$

Multiply $1^{\text {st }}$ row by $\frac{1}{7}$

$$
\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
-2 & 11 & 9 & -3 & -6 \\
5 & -29 & -23 & 7 & 16
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
-2 & 11 & 9 & -3 & -6 \\
5 & -29 & -23 & 7 & 16
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & \frac{1}{7} & \frac{1}{7} & -\frac{1}{7} & 0 \\
5 & -29 & -23 & 7 & 16
\end{array}\right]}
\end{aligned}
$$

Add 2 times $1^{\text {st }}$ row to $2^{\text {nd }}$ row

$$
\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & \frac{1}{7} & \frac{1}{7} & -\frac{1}{7} & 0 \\
5 & -29 & -23 & 7 & 16
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & \frac{1}{7} & \frac{1}{7} & -\frac{1}{7} & 0 \\
5 & -29 & -23 & 7 & 16
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & \frac{1}{7} & \frac{1}{7} & -\frac{1}{7} & 0 \\
0 & -\frac{13}{7} & -\frac{6}{7} & -\frac{1}{7} & 1
\end{array}\right]}
\end{aligned}
$$

Add -5 times $1^{\text {st }}$ row to $3^{\text {rd }}$ row

$$
\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & \frac{1}{7} & \frac{1}{7} & -\frac{1}{7} & 0 \\
0 & -\frac{13}{7} & -\frac{6}{7} & -\frac{1}{7} & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & \frac{1}{7} & \frac{1}{7} & -\frac{1}{7} & 0 \\
0 & -\frac{13}{7} & -\frac{6}{7} & -\frac{1}{7} & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & 1 & 1 & -1 & 0 \\
0 & -\frac{13}{7} & -\frac{6}{7} & -\frac{1}{7} & 1
\end{array}\right]}
\end{aligned}
$$

Multiply $2^{\text {nd }}$ row by 7

$$
\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & 1 & 1 & -1 & 0 \\
0 & -\frac{13}{7} & -\frac{6}{7} & -\frac{1}{7} & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & 1 & 1 & -1 & 0 \\
0 & -\frac{13}{7} & -\frac{6}{7} & -\frac{1}{7} & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & 1 & 1 & -1 & 0 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]}
\end{aligned}
$$

Add $\frac{13}{7}$ times $2^{\text {nd }}$ row to $3^{\text {rd }}$ row

$$
\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & 1 & 1 & -1 & 0 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & 1 & 1 & -1 & 0 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]}
\end{aligned}
$$

Add -1 times $3^{\text {rd }}$ row to $2^{\text {nd }}$ row

$$
\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & -\frac{31}{7} & \frac{10}{7} & 3 \\
0 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & 0 & -\frac{52}{7} & \frac{52}{7} \\
0 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]}
\end{aligned}
$$

Add $\frac{31}{7}$ times $3^{\text {rd }}$ row to $1^{\text {st }}$ row

$$
\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & 0 & -\frac{52}{7} & \frac{52}{7} \\
0 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{rrrrr}
1 & -\frac{38}{7} & 0 & -\frac{52}{7} & \frac{52}{7} \\
0 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & 2 \\
0 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]}
\end{gathered}
$$

Add $\frac{38}{7}$ times $2^{\text {nd }}$ row to $1^{\text {st }}$ row

Computational Remarks

- When solving a linear system on a computer, you get slight speedups by only reducing to a row echelon form and then substituting; this is known as back substitution
- Gaussian elimination is great for relatively small matrices, but there are faster algorithms for huge matrices, based on Strassen multiplication. [1, Algorithm 7.8; 2]
- When the numbers in the matrix are not known exactly, you need to be careful to reduce the growth of errors.
- The simplex method is based on Gaussian elimination and used for solving systems of linear inequalities. [3]

$$
\left[\begin{array}{rrrrr}
0 & 0 & 1 & 2 & -2 \\
-1 & 2 & 6 & 14 & -6 \\
1 & -2 & -6 & -14 & 7
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
0 & 0 & 1 & 2 & -2 \\
-1 & 2 & 6 & 14 & -6 \\
1 & -2 & -6 & -14 & 7
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
-1 & 2 & 6 & 14 & -6 \\
0 & 0 & 1 & 2 & -2 \\
1 & -2 & -6 & -14 & 7
\end{array}\right]}
\end{aligned}
$$

Swap $1^{\text {st }}$ and $2^{\text {nd }}$ rows

$$
\left[\begin{array}{rrrrr}
-1 & 2 & 6 & 14 & -6 \\
0 & 0 & 1 & 2 & -2 \\
1 & -2 & -6 & -14 & 7
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
-1 & 2 & 6 & 14 & -6 \\
0 & 0 & 1 & 2 & -2 \\
1 & -2 & -6 & -14 & 7
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 6 \\
0 & 0 & 1 & 2 & -2 \\
1 & -2 & -6 & -14 & 7
\end{array}\right]}
\end{aligned}
$$

Multiply $1^{\text {st }}$ row by -1

$$
\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 6 \\
0 & 0 & 1 & 2 & -2 \\
1 & -2 & -6 & -14 & 7
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 6 \\
0 & 0 & 1 & 2 & -2 \\
1 & -2 & -6 & -14 & 7
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 6 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Add -1 times $1^{\text {st }}$ row to $3^{\text {rd }}$ row

$$
\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 6 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 6 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 6 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Add 2 times $3^{\text {rd }}$ row to $2^{\text {nd }}$ row

$$
\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 6 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 6 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Add -6 times $3^{\text {rd }}$ row to $1^{\text {st }}$ row

$$
\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & -2 & -6 & -14 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & -2 & 0 & -2 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Add 6 times $2^{\text {nd }}$ row to $1^{\text {st }}$ row

Practice

I've made an online applet that you can practice with. It's at http:
//people.ucalgary.ca/~roed/courses/211/practice.html, or linked from the webpage.
[1] William Stein. Linear Algebra - Modular Forms, A Computational Approach. http://wstein.org/books/modform/modform/linear_algebra.html
[2] Stoimen's Blog. Computer Algorithms: Strassen's Matrix Multiplication. http://www.stoimen.com/blog/2012/11/26/ computer-algorithms-strassens-matrix-multiplication/.
[3] Simplex Algorithm. Wikipedia. http://en.wikipedia.org/wiki/Simplex_algorithm.

