Linear Methods (Math 211)
 Lecture 13 - §2.5 \& 2.6

(with slides adapted from K. Seyffarth)

David Roe

October 9, 2013

Recall
(1) Inverses of Elementary Matrices
(2) Determining Elem. Matrices that Take A to B

Today

(1) Products of Elementary Matrices
(2) Linear Transformations
(3) ... and Matrix Transformations

Example
 Express $A=\left[\begin{array}{rr}4 & 1 \\ -3 & 2\end{array}\right]$ as a product of elementary matrices.

Example

Express $A=\left[\begin{array}{rr}4 & 1 \\ -3 & 2\end{array}\right]$ as a product of elementary matrices.
First notice that A is invertible since $\operatorname{det} A=8-(-3)=11 \neq 0$.

$$
\left[\begin{array}{rr}
4 & 1 \\
-3 & 2
\end{array}\right] \underset{\mathbf{e}_{1}}{\longrightarrow}\left[\begin{array}{rr}
1 & 3 \\
-3 & 2
\end{array}\right] \underset{\mathbf{e}_{2}}{\longrightarrow}\left[\begin{array}{rr}
1 & 3 \\
0 & 11
\end{array}\right] \underset{\mathbf{e}_{3}}{\longrightarrow}\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right] \underset{\mathbf{e}_{4}}{\longrightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and

$$
\mathbf{e}_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right], \mathbf{e}_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{11}
\end{array}\right], \mathbf{e}_{4}=\left[\begin{array}{rr}
1 & -3 \\
0 & 1
\end{array}\right] .
$$

Since $E_{4} E_{3} E_{2} E_{1} A=I, A^{-1}=E_{4} E_{3} E_{2} E_{1}$, and hence

$$
A=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1}
$$

Example (continued)

Therefore,

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]^{-1}\left[\begin{array}{rr}
1 & 0 \\
0 & \frac{1}{11}
\end{array}\right]^{-1}\left[\begin{array}{rr}
1 & -3 \\
0 & 1
\end{array}\right]^{-1},
$$

i.e.,

$$
A=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-3 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & 11
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right] .
$$

Problem

Is I_{n} an elementary matrix? Explain.

Problem

Is 0 an elementary matrix? Explain.

Theorem (§2.5 Theorem 4)

If A is a matrix, and R and S are reduced row-echelon forms of A, then $R=S$.

Linear Transformations

Definition

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation if and only if, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and all scalars a,
(T1) $T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})$
(preservation of addition)
(T2) $T(a \mathbf{x})=a T(\mathbf{x}) \quad$ (preservation of scalar multiplication)
As a consequence of $T 2$, for any linear transformation T,

$$
T(0 \mathbf{x})=0 T(\mathbf{x}), \text { implying } T(0)=0
$$

and

$$
T((-1) \mathbf{x})=(-1) T(\mathbf{x}), \text { implying } T(-\mathbf{x})=-T(\mathbf{x})
$$

i.e., T preserves the zero vector and T preserves the negative of a vector.

Furthermore, if $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ are vectors in \mathbb{R}^{n} and \mathbf{y} is a linear combination of $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$, i.e.,

$$
\mathbf{y}=a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\cdots+a_{k} \mathbf{x}_{k}
$$

for some $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{R}$, then (T1) and (T2) used repeatedly give us

$$
\begin{aligned}
T(\mathbf{y}) & =T\left(a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\cdots+a_{k} \mathbf{x}_{k}\right) \\
& =a_{1} T\left(\mathbf{x}_{1}\right)+a_{2} T\left(\mathbf{x}_{2}\right)+\cdots+a_{k} T\left(\mathbf{x}_{k}\right),
\end{aligned}
$$

i.e., T preserves linear combinations.

Example

Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
T\left[\begin{array}{r}
1 \\
1 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right] \text { and } T\left[\begin{array}{r}
0 \\
-1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right] \text {. Find } T\left[\begin{array}{r}
1 \\
3 \\
-2 \\
-4
\end{array}\right] .
$$

Example

Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that
$T\left[\begin{array}{r}1 \\ 1 \\ 0 \\ -2\end{array}\right]=\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]$ and $T\left[\begin{array}{r}0 \\ -1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 0 \\ 1\end{array}\right]$. Find $T\left[\begin{array}{r}1 \\ 3 \\ -2 \\ -4\end{array}\right]$.
The only way it is possible to solve this problem is if

$$
\left[\begin{array}{r}
1 \\
3 \\
-2 \\
-4
\end{array}\right] \text { is a linear combination of }\left[\begin{array}{r}
1 \\
1 \\
0 \\
-2
\end{array}\right] \text { and }\left[\begin{array}{r}
0 \\
-1 \\
1 \\
1
\end{array}\right],
$$

i.e., if there exist $a, b \in \mathbb{R}$ so that

$$
\left[\begin{array}{r}
1 \\
3 \\
-2 \\
-4
\end{array}\right]=a\left[\begin{array}{r}
1 \\
1 \\
0 \\
-2
\end{array}\right]+b\left[\begin{array}{r}
0 \\
-1 \\
1 \\
1
\end{array}\right]
$$

Example (continued)

Solve the system of four equations in two variables:

$$
\left[\begin{array}{rr|r}
1 & 0 & 1 \\
1 & -1 & 3 \\
0 & 1 & -2 \\
-2 & 1 & -4
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rr|r}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus $a=1, b=-2$, and

$$
\left[\begin{array}{r}
1 \\
3 \\
-2 \\
-4
\end{array}\right]=\left[\begin{array}{r}
1 \\
1 \\
0 \\
-2
\end{array}\right]-2\left[\begin{array}{r}
0 \\
-1 \\
1 \\
1
\end{array}\right] .
$$

Example (continued)

It follows that

$$
\begin{aligned}
T\left[\begin{array}{r}
1 \\
3 \\
-2 \\
-4
\end{array}\right] & =T\left(\left[\begin{array}{r}
1 \\
1 \\
0 \\
-2
\end{array}\right]-2\left[\begin{array}{r}
0 \\
-1 \\
1 \\
1
\end{array}\right]\right) \\
& =T\left[\begin{array}{r}
1 \\
1 \\
0 \\
-2
\end{array}\right]-2 T\left[\begin{array}{r}
0 \\
-1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right]-2\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-8 \\
3 \\
-3
\end{array}\right]
\end{aligned}
$$

Example (§2.6 Example 2)

Every matrix transformation is a linear transformation.

Example (§2.6 Example 2)

Every matrix transformation is a linear transformation.

Proof.

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation induced by the $m \times n$ matrix A, i.e., $T(\mathbf{x})=A \mathbf{x}$ for each $\mathbf{x} \in \mathbb{R}^{n}$.
Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and let $a \in \mathbb{R}$. Then

$$
T(\mathbf{x}+\mathbf{y})=A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=T(\mathbf{x})+T(\mathbf{y})
$$

proving that T preserves addition. Also,

$$
T(a \mathbf{x})=A(a \mathbf{x})=a(A \mathbf{x})=a T(\mathbf{x})
$$

proving that T preserves scalar multiplication.
Since (T1) and (T2) are satisfied, T is a linear transformation.

It turns out that the converse of this statement is also true, i.e., every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation.

Theorem (§2.6 Theorem 2)

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a transformation.
(1) T is linear if and only if T is a matrix transformation.
(2) If T is linear, then T is induced by the unique matrix

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right],
$$

where \mathbf{e}_{j} is the $j^{\text {th }}$ column of I_{n}.

The uniqueness in Theorem 2 guarantees that there is exactly one matrix for any linear transformation, so it makes sense to say the matrix of a linear transformation.

Examples

Consider the following linear transformations $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

- Let Q_{0} be reflection across the x-axis.
- Let $R_{\pi / 2}$ be rotation by $\frac{\pi}{2}$ counterclockwise.
- Let Q_{1} be reflection across the line $y=x$.

Find the matrices associated to them using Theorem 2.

Examples

Consider the following linear transformations $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

- Let Q_{0} be reflection across the x-axis.
- Let $R_{\pi / 2}$ be rotation by $\frac{\pi}{2}$ counterclockwise.
- Let Q_{1} be reflection across the line $y=x$.

Find the matrices associated to them using Theorem 2.

$$
\begin{aligned}
& Q_{0}\left(\mathbf{e}_{1}\right)=Q_{0}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& Q_{0}\left(\mathbf{e}_{2}\right)=Q_{0}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
0 \\
-1
\end{array}\right]
\end{aligned}
$$

Thus the matrix for Q_{0} is $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.

Examples (continued)

$$
\begin{aligned}
& R_{\pi / 2}\left(\mathbf{e}_{1}\right)=R_{\pi / 2}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& R_{\pi / 2}\left(\mathbf{e}_{2}\right)=R_{\pi / 2}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
-1 \\
0
\end{array}\right]
\end{aligned}
$$

Thus the matrix for $R_{\pi / 2}$ is $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$.

$$
\begin{aligned}
& Q_{1}\left(\mathbf{e}_{1}\right)=Q_{1}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& Q_{1}\left(\mathbf{e}_{2}\right)=Q_{1}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

Thus the matrix for Q_{1} is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Summary

(1) Products of Elementary Matrices
(2) Linear Transformations
(3) ... and Matrix Transformations

