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Recall

1 Inverses of Elementary Matrices

2 Determining Elem. Matrices that Take A to B
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Today

1 Products of Elementary Matrices

2 Linear Transformations
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Example

Express A =

[
4 1
−3 2

]
as a product of elementary matrices.

First notice that A is invertible since detA = 8− (−3) = 11 6= 0.

[
4 1
−3 2

]
−→
e1

[
1 3
−3 2

]
−→
e2

[
1 3
0 11

]
−→
e3

[
1 3
0 1

]
−→
e4

[
1 0
0 1

]
and

e1 =

[
1 1
0 1

]
, e2 =

[
1 0
3 1

]
, e3 =

[
1 0
0 1

11

]
, e4 =

[
1 −3
0 1

]
.

Since E4E3E2E1A = I , A−1 = E4E3E2E1, and hence

A = E−11 E−12 E−13 E−14 .
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Example (continued)

Therefore,

A =

[
1 1
0 1

]−1 [
1 0
3 1

]−1 [
1 0
0 1

11

]−1 [
1 −3
0 1

]−1
,

i.e.,

A =

[
1 −1
0 1

] [
1 0
−3 1

] [
1 0
0 11

] [
1 3
0 1

]
.
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Problem

Is In an elementary matrix? Explain.

Problem

Is 0 an elementary matrix? Explain.
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Theorem (§2.5 Theorem 4)

If A is a matrix, and R and S are reduced row-echelon forms of A,
then R = S .
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Linear Transformations

Definition

A transformation T : Rn → Rm is a linear transformation if and
only if, for all x, y ∈ Rn and all scalars a,

(T1) T (x + y) = T (x) + T (y) (preservation of addition)

(T2) T (ax) = aT (x) (preservation of scalar multiplication)

As a consequence of T2, for any linear transformation T ,

T (0x) = 0T (x), implying T (0) = 0,

and

T ((−1)x) = (−1)T (x), implying T (−x) = −T (x),

i.e., T preserves the zero vector and T preserves the negative of a
vector.
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Furthermore, if x1, x2, . . . , xk are vectors in Rn and y is a linear
combination of x1, x2, . . . , xk , i.e.,

y = a1x1 + a2x2 + · · ·+ akxk

for some a1, a2, . . . , ak ∈ R, then (T1) and (T2) used repeatedly
give us

T (y) = T (a1x1 + a2x2 + · · ·+ akxk)

= a1T (x1) + a2T (x2) + · · ·+ akT (xk),

i.e.,T preserves linear combinations.
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Example

Let T : R4 → R3 be a linear transformation such that

T


1
1
0
−2

 =

 2
3
−1

 and T


0
−1

1
1

 =

5
0
1

. Find T


1
3
−2
−4

.

The only way it is possible to solve this problem is if
1
3
−2
−4

 is a linear combination of


1
1
0
−2

 and


0
−1

1
1

,

i.e., if there exist a, b ∈ R so that
1
3
−2
−4

 = a


1
1
0
−2

+ b


0
−1

1
1
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Example (continued)

Solve the system of four equations in two variables:
1 0 1
1 −1 3
0 1 −2
−2 1 −4

→ · · · →


1 0 1
0 1 −2
0 0 0
0 0 0


Thus a = 1, b = −2, and

1
3
−2
−4

 =


1
1
0
−2

− 2


0
−1

1
1

 .
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Example (continued)

It follows that

T


1
3
−2
−4

 = T




1
1
0
−2

− 2


0
−1

1
1




= T


1
1
0
−2

− 2T


0
−1

1
1


=

 2
3
−1

− 2

5
0
1

 =

−8
3
−3
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Example (§2.6 Example 2)

Every matrix transformation is a linear transformation.

Proof.

Suppose T : Rn → Rm is a matrix transformation induced by the
m × n matrix A, i.e., T (x) = Ax for each x ∈ Rn.
Let x, y ∈ Rn and let a ∈ R. Then

T (x + y) = A(x + y) = Ax + Ay = T (x) + T (y),

proving that T preserves addition. Also,

T (ax) = A(ax) = a(Ax) = aT (x),

proving that T preserves scalar multiplication.

Since (T1) and (T2) are satisfied, T is a linear transformation.
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It turns out that the converse of this statement is also true, i.e.,
every linear transformation from Rn to Rm is a matrix
transformation.

Theorem (§2.6 Theorem 2)

Let T : Rn → Rm be a transformation.

1 T is linear if and only if T is a matrix transformation.

2 If T is linear, then T is induced by the unique matrix

A =
[
T (e1) T (e2) · · · T (en)

]
,

where ej is the jth column of In.
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The uniqueness in Theorem 2 guarantees that there is exactly one
matrix for any linear transformation, so it makes sense to say the
matrix of a linear transformation.
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Examples

Consider the following linear transformations R2 → R2.

Let Q0 be reflection across the x-axis.

Let Rπ/2 be rotation by π
2 counterclockwise.

Let Q1 be reflection across the line y = x .

Find the matrices associated to them using Theorem 2.

Q0(e1) = Q0

([
1
0

])
=

[
1
0

]
Q0(e2) = Q0

([
0
1

])
=

[
0
−1

]

Thus the matrix for Q0 is

[
1 0
0 −1

]
.
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Examples (continued)

Rπ/2(e1) = Rπ/2

([
1
0

])
=

[
0
1

]
Rπ/2(e2) = Rπ/2

([
0
1

])
=

[
−1

0

]

Thus the matrix for Rπ/2 is

[
0 −1
1 0

]
.

Q1(e1) = Q1

([
1
0

])
=

[
0
1

]
Q1(e2) = Q1

([
0
1

])
=

[
1
0

]

Thus the matrix for Q1 is

[
0 1
1 0

]
.
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