Linear Transformations

... and Matrix Transformations 000000

Linear Methods (Math 211) Lecture 13 - §2.5 & 2.6

(with slides adapted from K. Seyffarth)

David Roe

October 9, 2013

Linear Transformations

... and Matrix Transformations 000000

Recall

- Inverses of Elementary Matrices
- 2 Determining Elem. Matrices that Take A to B

Linear Transformations

... and Matrix Transformations

2 Linear Transformations

3 ... and Matrix Transformations

Linear Transformations

 \ldots and Matrix Transformations $_{000000}$

Example

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices.

... and Matrix Transformations 000000

Example

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices.

First notice that A is invertible since det $A = 8 - (-3) = 11 \neq 0$.

$$\begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix} \xrightarrow{\mathbf{e}_1} \begin{bmatrix} 1 & 3 \\ -3 & 2 \end{bmatrix} \xrightarrow{\mathbf{e}_2} \begin{bmatrix} 1 & 3 \\ 0 & 11 \end{bmatrix} \xrightarrow{\mathbf{e}_3} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \xrightarrow{\mathbf{e}_4} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and

$$\mathbf{e}_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{11} \end{bmatrix}, \mathbf{e}_4 = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$$

Since $E_4 E_3 E_2 E_1 A = I$, $A^{-1} = E_4 E_3 E_2 E_1$, and hence

$$A = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1}$$

Linear Transformations

... and Matrix Transformations 000000

Example (continued)

Therefore,

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{11} \end{bmatrix}^{-1} \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}^{-1},$$

i.e.,
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}.$$

Linear Transformations

... and Matrix Transformations 000000

Problem

Is In an elementary matrix? Explain.

Problem

Is 0 an elementary matrix? Explain.

... and Matrix Transformations 000000

Theorem ($\S2.5$ Theorem 4)

If A is a matrix, and R and S are reduced row-echelon forms of A, then R = S.

Linear Transformations •0000 ... and Matrix Transformations 000000

Linear Transformations

Definition

A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is a **linear transformation** if and only if, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and all scalars a, (T1) $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ (preservation of addition) (T2) $T(a\mathbf{x}) = aT(\mathbf{x})$ (preservation of scalar multiplication)

As a consequence of T2, for any linear transformation T,

$$T(0\mathbf{x}) = 0T(\mathbf{x}), \text{ implying } T(0) = 0,$$

and

$$T((-1)\mathbf{x}) = (-1)T(\mathbf{x}), \text{ implying } T(-\mathbf{x}) = -T(\mathbf{x}),$$

i.e., \mathcal{T} preserves the zero vector and \mathcal{T} preserves the negative of a vector.

... and Matrix Transformations 000000

Furthermore, if $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ are vectors in \mathbb{R}^n and \mathbf{y} is a linear combination of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$, i.e.,

$$\mathbf{y} = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \dots + a_k \mathbf{x}_k$$

for some $a_1, a_2, \ldots, a_k \in \mathbb{R}$, then (T1) and (T2) used repeatedly give us

$$T(\mathbf{y}) = T(a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \dots + a_k\mathbf{x}_k)$$

= $a_1T(\mathbf{x}_1) + a_2T(\mathbf{x}_2) + \dots + a_kT(\mathbf{x}_k),$

i.e., T preserves linear combinations.

Linear Transformations

... and Matrix Transformations 000000

Example

Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation such that $T \begin{bmatrix} 1\\1\\0\\-2 \end{bmatrix} = \begin{bmatrix} 2\\3\\-1 \end{bmatrix}$ and $T \begin{bmatrix} 0\\-1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 5\\0\\1 \end{bmatrix}$. Find $T \begin{bmatrix} 1\\3\\-2\\-4 \end{bmatrix}$.

... and Matrix Transformations 000000

Example

Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation such that $T \begin{vmatrix} 1 \\ 1 \\ 0 \\ -2 \end{vmatrix} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} \text{ and } T \begin{vmatrix} 0 \\ -1 \\ 1 \\ 1 \end{vmatrix} = \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}. \text{ Find } T \begin{vmatrix} 1 \\ 3 \\ -2 \\ -4 \end{vmatrix}.$ The only way it is possible to solve this problem is if $\begin{vmatrix} 1 \\ 3 \\ -2 \\ -4 \end{vmatrix}$ is a linear combination of $\begin{vmatrix} 1 \\ 1 \\ 0 \\ 2 \end{vmatrix}$ and $\begin{vmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 1 \end{vmatrix}$,

i.e., if there exist $a, b \in \mathbb{R}$ so that

$$\begin{bmatrix} 1\\3\\-2\\-4 \end{bmatrix} = a \begin{bmatrix} 1\\1\\0\\-2 \end{bmatrix} + b \begin{bmatrix} 0\\-1\\1\\1\\1 \end{bmatrix}$$

... and Matrix Transformations 000000

Example (continued)

Solve the system of four equations in two variables:

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 3 \\ 0 & 1 & -2 \\ -2 & 1 & -4 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus a = 1, b = -2, and

$$\begin{bmatrix} 1\\3\\-2\\-4 \end{bmatrix} = \begin{bmatrix} 1\\1\\0\\-2 \end{bmatrix} - 2 \begin{bmatrix} 0\\-1\\1\\1\\1 \end{bmatrix}.$$

Linear Transformations

... and Matrix Transformations 000000

Example (continued)

It follows that

$$\mathcal{T} \begin{bmatrix} 1\\3\\-2\\-4 \end{bmatrix} = \mathcal{T} \left(\begin{bmatrix} 1\\1\\0\\-2 \end{bmatrix} - 2 \begin{bmatrix} 0\\-1\\1\\1\\1 \end{bmatrix} \right)$$
$$= \mathcal{T} \begin{bmatrix} 1\\1\\0\\-2 \end{bmatrix} - 2\mathcal{T} \begin{bmatrix} 0\\-1\\1\\1\\1 \end{bmatrix}$$
$$= \begin{bmatrix} 2\\3\\-1 \end{bmatrix} - 2\begin{bmatrix} 5\\0\\1 \end{bmatrix} = \begin{bmatrix} -8\\3\\-3 \end{bmatrix}$$

... and Matrix Transformations •00000

Example ($\S2.6$ Example 2)

Every matrix transformation is a linear transformation.

... and Matrix Transformations •00000

Example ($\S2.6$ Example 2)

Every matrix transformation is a linear transformation.

Proof.

Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation induced by the $m \times n$ matrix A, i.e., $T(\mathbf{x}) = A\mathbf{x}$ for each $\mathbf{x} \in \mathbb{R}^n$. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and let $a \in \mathbb{R}$. Then

$$T(\mathbf{x} + \mathbf{y}) = A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = T(\mathbf{x}) + T(\mathbf{y}),$$

proving that T preserves addition. Also,

$$T(a\mathbf{x}) = A(a\mathbf{x}) = a(A\mathbf{x}) = aT(\mathbf{x}),$$

proving that T preserves scalar multiplication.

Since (T1) and (T2) are satisfied, T is a linear transformation.

... and Matrix Transformations 00000

It turns out that the converse of this statement is also true, i.e., every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.

Theorem ($\S2.6$ Theorem 2)

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a transformation.

- **1** T is linear if and only if T is a matrix transformation.
- **2** If T is linear, then T is induced by the unique matrix

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix},$$

where \mathbf{e}_j is the jth column of I_n .

... and Matrix Transformations

The uniqueness in Theorem 2 guarantees that there is exactly one matrix for any linear transformation, so it makes sense to say the matrix of a linear transformation.

... and Matrix Transformations

Examples

Consider the following linear transformations $\mathbb{R}^2 \to \mathbb{R}^2$.

- Let Q_0 be reflection across the x-axis.
- Let $R_{\pi/2}$ be rotation by $\frac{\pi}{2}$ counterclockwise.
- Let Q_1 be reflection across the line y = x.

Find the matrices associated to them using Theorem 2.

... and Matrix Transformations 000000

Examples

Consider the following linear transformations $\mathbb{R}^2 \to \mathbb{R}^2$.

- Let Q_0 be reflection across the x-axis.
- Let $R_{\pi/2}$ be rotation by $\frac{\pi}{2}$ counterclockwise.
- Let Q_1 be reflection across the line y = x.

Find the matrices associated to them using Theorem 2.

$$\begin{split} Q_0(\mathbf{e}_1) &= Q_0\left(\begin{bmatrix} 1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\0 \end{bmatrix} \\ Q_0(\mathbf{e}_2) &= Q_0\left(\begin{bmatrix} 0\\1 \end{bmatrix} \right) = \begin{bmatrix} 0\\-1 \end{bmatrix} \end{split}$$
 Thus the matrix for Q_0 is $\begin{bmatrix} 1 & 0\\0 & -1 \end{bmatrix}$.

Linear Transformations

... and Matrix Transformations

Examples (continued)

$$R_{\pi/2}(\mathbf{e}_1) = R_{\pi/2} \left(\begin{bmatrix} 1\\0 \end{bmatrix} \right) = \begin{bmatrix} 0\\1 \end{bmatrix}$$
$$R_{\pi/2}(\mathbf{e}_2) = R_{\pi/2} \left(\begin{bmatrix} 0\\1 \end{bmatrix} \right) = \begin{bmatrix} -1\\0 \end{bmatrix}$$

Thus the matrix for
$$R_{\pi/2}$$
 is $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

$$Q_{1}(\mathbf{e}_{1}) = Q_{1}\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$$
$$Q_{1}(\mathbf{e}_{2}) = Q_{1}\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix}$$

Thus the matrix for Q_1 is $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$.

Linear Transformations

... and Matrix Transformations 00000

Products of Elementary Matrices

2 Linear Transformations

3 ... and Matrix Transformations