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Cofactor expansion

We define the determinant of an n × n matrix iteratively, in terms
of determinants of (n − 1)× (n − 1) matrices. Let A = [aij ] be an
n × n matrix.

The sign of the (i , j) position is (−1)i+j .
Thus the sign is 1 if (i + j) is even, and −1 if (i + j) is odd.

Let Aij denote the (n − 1)× (n − 1) matrix obtained from A by
deleting row i and column j .

The (i , j)-cofactor of A is

cij(A) = (−1)i+j det(Aij).

Finally,

detA = a11c11(A) + a12c12(A) + a13c13(A) + · · ·+ a1nc1n(A),
and is called the cofactor expansion of detA along row 1.
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Example

Let A =

1 2 3
4 5 6
7 8 9

. Find detA.

Using cofactor expansion along row 1,

detA = 1c11(A) + 2c12(A) + 3c13(A)

= 1(−1)2
∣∣∣∣5 6
8 9

∣∣∣∣+ 2(−1)3
∣∣∣∣4 6
7 9

∣∣∣∣+ 3(−1)4
∣∣∣∣4 5
7 8

∣∣∣∣
= (45− 48)− 2(36− 42) + 3(32− 35)

= −3− 2(−6) + 3(−3)

= −3 + 12− 9

= 0
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Example (continued)

A =

1 2 3
4 5 6
7 8 9


Now try cofactor expansion along column 2.

detA = 2c12(A) + 5c22(A) + 8c32(A)

= 2(−1)3
∣∣∣∣4 6
7 9

∣∣∣∣+ 5(−1)4
∣∣∣∣1 3
7 9

∣∣∣∣+ 8(−1)5
∣∣∣∣1 3
4 6

∣∣∣∣
= −2(36− 42) + 5(9− 21)− 8(6− 12)

= −2(−6) + 5(−12)− 8(−6)

= 12− 60 + 48

= 0.

We get the same answer!
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Theorem (§3.1 Theorem 1)

The determinant of an n × n matrix A can be computed using the
cofactor expansion along any row or column of A.
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Example

Let A =


0 1 2 1
5 0 0 7
0 1 −1 0
3 0 0 2

. Find detA.

Cofactor expansion along row 1 yields

detA = 0c11(A) + 1c12(A) + 2c13(A) + 1c14(A)

= 1c12(A) + 2c13(A) + c14(A),

whereas cofactor expansion along, row 3 yields

detA = 0c31(A) + 1c32(A) + (−1)c33(A) + 0c34(A)

= 1c32(A) + (−1)c33(A),

i.e., in the first case we have to compute three cofactors, but in
the second we only have to compute two.
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Example (continued)

We use cofactor expansion along row 3 rather than row 1.

A =


0 1 2 1
5 0 0 7
0 1 −1 0
3 0 0 2


detA = 1c32(A) + (−1)c33(A)

= 1(−1)5

∣∣∣∣∣∣
0 2 1
5 0 7
3 0 2

∣∣∣∣∣∣+ (−1)(−1)6

∣∣∣∣∣∣
0 1 1
5 0 7
3 0 2

∣∣∣∣∣∣
= (−1)2(−1)3

∣∣∣∣5 7
3 2

∣∣∣∣+ (−1)1(−1)3
∣∣∣∣5 7
3 2

∣∣∣∣
= 2(10− 21) + 1(10− 21)

= 2(−11) + (−11) = −33.
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Example (continued)

Try computing det


0 1 2 1
5 0 0 7
0 1 −1 0
3 0 0 2

 using cofactor expansion along

other rows and columns, for instance column 2 or row 4. You will
still get detA = −33.
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Example

Find detA for A =


−8 1 0 −4

5 7 0 −7
12 −3 0 8
−3 11 0 2

.

Solution.
Using cofactor expansion along column 3, detA = 0.

Fact

If A is an n × n matrix with a row or column of zeros, then
detA = 0.
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Elementary Row Operations and Determinants

Example

Let A =

2 0 −3
0 4 0
1 0 −2

. Then

detA = 4(−1)4
∣∣∣∣2 −3
1 −2

∣∣∣∣ = 4(−1) = −4.

Let B1,B2, and B3 be obtained from A by performing a type 1, 2
and 3 elementary row operation, respectively, i.e.,

B1 =

2 0 −3
1 0 −2
0 4 0

 ,B2 =

 2 0 −3
0 4 0
−3 0 6

 ,B3 =

2 0 −3
0 4 0
5 0 −8

 .

Compute detB1, detB2, and detB3.
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Elementary Row Operations and Determinants

Example (continued)

detB1 = 4(−1)5
∣∣∣∣2 −3
1 −2

∣∣∣∣ = (−4)(−1) = 4 = (−1) detA.

detB2 = 4(−1)4
∣∣∣∣ 2 −3
−3 6

∣∣∣∣ = 4(12− 9) = 4× 3 = 12 = −3 detA.

detB3 = 4(−1)4
∣∣∣∣2 −3
5 −8

∣∣∣∣ = 4(−16 + 15) = 4(−1) = −4 = detA.
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Theorem (§3.1 Theorem 2)

Let A be an n × n matrix.

1 If A has a row or column of zeros, then detA = 0.

2 If B is obtained from A by exchanging two different rows (or
columns) of A, then detB = − detA.

3 If B is obtained from A by multiplying a row (or column) of A
by a scalar k ∈ R, then detB = k detA.

4 If B is obtained from A by adding k times one row of A to a
different row of A (or adding k times one column of A to a
different column of A) then detB = detA.

5 If two different rows (or columns) of A are identical, then
detA = 0.
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Example

det


3 1 2 4
−1 −3 8 0

1 −1 5 5
1 1 2 −1

 =

∣∣∣∣∣∣∣∣
0 −8 26 4
−1 −3 8 0

0 −4 13 5
0 −2 10 −1

∣∣∣∣∣∣∣∣
= (−1)(−1)3

∣∣∣∣∣∣
−8 26 4
−4 13 5
−2 10 −1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
0 −14 8
0 −7 7
−2 10 −1

∣∣∣∣∣∣
= (−2)(−1)4

∣∣∣∣−14 8
−7 7

∣∣∣∣
= −2

∣∣∣∣ 0 −6
−7 7

∣∣∣∣
= (−2)(−42) = 84.
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Example

If det

a b c
p q r
x y z

 = −1, find det

 −x −y −z
3p + a 3q + b 3r + c

2p 2q 2r

.

∣∣∣∣∣∣
−x −y −z

3p + a 3q + b 3r + c
2p 2q 2r

∣∣∣∣∣∣ = (−1)(2)

∣∣∣∣∣∣
x y z

3p + a 3q + b 3r + c
p q r

∣∣∣∣∣∣
= −2

∣∣∣∣∣∣
x y z
a b c
p q r

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
a b c
x y z
p q r

∣∣∣∣∣∣ = −2

∣∣∣∣∣∣
a b c
p q r
x y z

∣∣∣∣∣∣
= (−2)(−1) = 2.
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Summary
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