Linear Methods (Math 211)
Lecture 19 - Appendix A & 3.1

(with slides adapted from K. Seyffarth)

David Roe

October 23, 2013
Recall

1. Roots of Unity
2. Finding Roots
3. Quadratic Polynomials
<table>
<thead>
<tr>
<th></th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Quadratic Polynomials</td>
</tr>
<tr>
<td>2</td>
<td>Complex Numbers: Final Notes</td>
</tr>
<tr>
<td>3</td>
<td>Determinants</td>
</tr>
</tbody>
</table>
Example

The quadratic $x^2 - 14x + 58$ has roots

$$x = \frac{14 \pm \sqrt{196 - 4 \times 58}}{2}$$

$$= \frac{14 \pm \sqrt{196 - 232}}{2}$$

$$= \frac{14 \pm \sqrt{-36}}{2}$$

$$= \frac{14 \pm 6i}{2}$$

$$= 7 \pm 3i,$$

so the roots are $7 + 3i$ and $7 - 3i$.
Conversely, given $u = a + bi$ with $b \neq 0$, there is an irreducible quadratic having roots u and \bar{u}.

Example

Find an irreducible quadratic with $u = 5 - 2i$ as a root. What is the other root?
Conversely, given $u = a + bi$ with $b \neq 0$, there is an irreducible quadratic having roots u and \bar{u}.

Example

Find an irreducible quadratic with $u = 5 - 2i$ as a root. What is the other root?

Solution.

\[
(x - u)(x - \bar{u}) = (x - (5 - 2i))(x - (5 + 2i))
= x^2 - (5 - 2i)x - (5 + 2i)x + (5 - 2i)(5 + 2i)
= x^2 - 10x + 29.
\]

Therefore, $x^2 - 10x + 29$ is an irreducible quadratic with roots $5 - 2i$ and $5 + 2i$.

Notice that $-10 = -(u + \bar{u})$ and $29 = u\bar{u} = |u|^2$.
Example

Find the roots of the quadratic \(x^2 - (3 - 2i)x + (5 - i) = 0 \).
Quadratics with Complex Coefficients

Example

Find the roots of the quadratic $x^2 - (3 - 2i)x + (5 - i) = 0$.

Using the quadratic formula

$$x = \frac{3 - 2i \pm \sqrt{(-(3 - 2i))^2 - 4(5 - i)}}{2}$$

Now,

$$(-(3 - 2i))^2 - 4(5 - i) = 5 - 12i - 20 + 4i = -15 - 8i,$$

so

$$x = \frac{3 - 2i \pm \sqrt{-15 - 8i}}{2}$$

To find $\pm \sqrt{-15 - 8i}$, solve $z^2 = -15 - 8i$ for z.
Example (continued)

Let \(z = a + bi \) and \(z^2 = -15 - 8i \). Then

\[
(a^2 - b^2) + 2abi = -15 - 8i,
\]

so \(a^2 - b^2 = -15 \) and \(2ab = -8 \).

Solving for \(a \) and \(b \) gives us \(z = \pm (1 - 4i) \).

Therefore,

\[
x = \frac{3 - 2i \pm (1 - 4i)}{2};
\]

\[
\frac{3 - 2i + (1 - 4i)}{2} = \frac{4 - 6i}{2} = 2 - 3i,
\]

\[
\frac{3 - 2i - (1 - 4i)}{2} = \frac{2 + 2i}{2} = 1 + i.
\]

Thus the roots of \(x^2 - (3 - 2i)x + (5 - i) \) are \(2 - 3i \) and \(1 + i \).
Example

Verify that \(u_1 = (4 - i) \) is a root of

\[x^2 - (2 - 3i)x - (10 + 6i) \]

and find the other root, \(u_2 \).
Example

Verify that $u_1 = (4 - i)$ is a root of

$$x^2 - (2 - 3i)x - (10 + 6i)$$

and find the other root, u_2.

$$u_1^2 - (2 - 3i)u_1 - (10 + 6i)$$

$$= (4 - i)^2 - (2 - 3i)(4 - i) - (10 + 6i)$$

$$= (15 - 8i) - (5 - 14i) - (10 + 6i)$$

$$= 0,$$

so $u_1 = (4 - i)$ is a root.
Example (continued)

Recall that if u_1 and u_2 are the roots of the quadratic, then

$$u_1 + u_2 = (2 - 3i) \text{ and } u_1 u_2 = -(10 + 6i).$$

Since $u_1 = 4 - i$ and $u_1 + u_2 = 2 - 3i$,

$$u_2 = 2 - 3i - u_1 = 2 - 3i - (4 - i) = -2 - 2i.$$

Therefore, the other root is $u_2 = -2 - 2i$.

You can easily verify your answer by computing $u_1 u_2$:

$$u_1 u_2 = (4 - i)(-2 - 2i) = -10 - 6i = -(10 + 6i).$$
Fundamental Theorem of Algebra

Theorem

Suppose that $P(z)$ is a polynomial with complex coefficients. Then P factors as a product of linear polynomials.

As a consequence, every polynomial of degree n has n roots (up to multiplicity).

Example

- $z^4 - 1 = (z - 1)(z + 1)(z - i)(z + i)$
- $z^2 - 2z + 1 = (z - 1)^2$
Complex Exponentials

The equation \(e^{i\theta} = \cos \theta + i \sin \theta \) is more than just notation. One defining feature of exponentials is that \(e^{A+B} = e^A e^B \). So does \(e^{i(\theta+\phi)} = e^{i\theta} e^{i\phi} \)?

\[
(\cos \theta + i \sin \theta)(\cos \phi + i \sin \phi) = (\cos \theta \cos \phi - \sin \theta \sin \phi) + i(\cos \theta \sin \phi + \sin \theta \cos \phi) = \cos(\theta + \phi) + i \sin(\theta + \phi).
\]

To prove that \(e^{i\theta} = \cos \theta + i \sin \theta \), one can show that both sides satisfy the same differential equation with the same initial conditions

1. \(F'(\theta) = iF(\theta) \),
2. \(F(0) = 1 \).
Key Features of Determinants

Recall the determinant \(\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \) of a \(2 \times 2 \) matrix. In Chapter 3 we study the generalization to \(n \times n \) matrices.

- \(A \) is invertible if and only if \(\det(A) \neq 0 \).
- Thus \(\det(A) = 0 \) when there is a nontrivial solution to \(Ax = 0 \).
- \(\det(AB) = \det(A) \cdot \det(B) \).
- \(|\det(A)|\) is the amount by which the matrix transformation induced by \(A \) expands volumes.
- \(\det(A) \) is positive if and only if \(A \) preserves orientation.

We will see other properties and applications of determinants over the course of the chapter.
Cofactor expansion

We define the determinant of an $n \times n$ matrix iteratively, in terms of determinants of $(n-1) \times (n-1)$ matrices. Let $A = [a_{ij}]$ be an $n \times n$ matrix.

- The sign of the (i, j) position is $(-1)^{i+j}$.

Thus the sign is 1 if $(i + j)$ is even, and -1 if $(i + j)$ is odd.

Let A_{ij} denote the $(n-1) \times (n-1)$ matrix obtained from A by deleting row i and column j.

- The (i, j)-cofactor of A is

$$c_{ij}(A) = (-1)^{i+j} \det(A_{ij}).$$

Finally,

- $\det A = a_{11}c_{11}(A) + a_{12}c_{12}(A) + a_{13}c_{13}(A) + \cdots + a_{1n}c_{1n}(A)$, and is called the cofactor expansion of $\det A$ along row 1.
Example

Let \(A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \). Find \(\det A \).
Example

Let \(A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \). Find det \(A \).

Using cofactor expansion along row 1,

\[
\text{det } A = 1c_{11}(A) + 2c_{12}(A) + 3c_{13}(A)
\]

\[
= 1(-1)^2 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} + 2(-1)^3 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3(-1)^4 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}
\]

\[
= (45 - 48) - 2(36 - 42) + 3(32 - 35)
\]

\[
= -3 - 2(-6) + 3(-3)
\]

\[
= -3 + 12 - 9
\]

\[
= 0
\]
Example

Let \(A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \). Find \(\det A \).

Using cofactor expansion along row 1,

\[
\det A = 1c_{11}(A) + 2c_{12}(A) + 3c_{13}(A)
\]

\[
= 1(-1)^2 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} + 2(-1)^3 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3(-1)^4 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}
\]

\[
= (45 - 48) - 2(36 - 42) + 3(32 - 35)
\]

\[
= -3 - 2(-6) + 3(-3)
\]

\[
= -3 + 12 - 9
\]

\[
= 0
\]
Example (continued)

\[A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \]

Now try cofactor expansion along column 2.

\[
\det A = 2c_{12}(A) + 5c_{22}(A) + 8c_{32}(A)
\]

\[
= 2(-1)^3 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 5(-1)^4 \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} + 8(-1)^5 \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix}
\]

\[
= -2(36 - 42) + 5(9 - 21) - 8(6 - 12)
\]

\[
= -2(-6) + 5(-12) - 8(-6)
\]

\[
= 12 - 60 + 48
\]

\[
= 0.
\]

We get the same answer!
Theorem (§3.1 Theorem 1)

The determinant of an $n \times n$ matrix A can be computed using the cofactor expansion along any row or column of A.
Summary

1. Quadratic Polynomials
2. Complex Numbers: Final Notes
3. Determinants