Linear Methods (Math 211) Lecture 18 - Appendix A
 (with slides adapted from K. Seyffarth)

David Roe

October 23, 2013

Recall
(1) Properties of Absolute Value
(2) The Complex Plane

- Polar Form

Today

(1) Roots of Unity
(2) Finding Roots
(3) Quadratic Polynomials

Roots of Unity

Example

Find all complex number z so that $z^{3}=1$, i.e., find the cube roots of unity. Express each root in the form $a+b i$.

Roots of Unity

Example

Find all complex number z so that $z^{3}=1$, i.e., find the cube roots of unity. Express each root in the form $a+b i$.

Let $z=r e^{i \theta}$. Since $1=1 e^{i 0}$ in polar form, we want to solve

$$
\left(r e^{i \theta}\right)^{3}=1 e^{i 0}
$$

i.e.,

$$
r^{3} e^{i 3 \theta}=1 e^{i 0}
$$

Thus $r^{3}=1$ and $3 \theta=0+2 \pi k=2 \pi k$ for some integer k. Since $r^{3}=1$ and r is real, $r=1$.

Example (continued)

Now $3 \theta=2 \pi k$, so $\theta=\frac{2 \pi}{3} k$.

k	θ	$e^{i \theta}$	
-3	-2π	$e^{-2 \pi i}$	$=1$
-2	$-\frac{4}{3} \pi$	$e^{(-4 \pi / 3) i}$	$=e^{(2 \pi / 3) i}$
-1	$-\frac{2}{3} \pi$	$e^{(-2 \pi / 3) i}$	$=e^{(-2 \pi / 3) i}$
0	0	$e^{0 i}$	$=1$
1	$\frac{2}{3} \pi$	$e^{(2 \pi / 3) i}$	$=e^{(2 \pi / 3) i}$
2	$\frac{4}{3} \pi$	$e^{(4 \pi / 3) i}$	$=e^{(-2 \pi / 3) i}$
3	2π	$e^{2 \pi i}$	$=1$

The three cube roots of unity are

$$
\begin{array}{rll}
e^{0 \pi i} & & =1 \\
e^{(2 \pi / 3) i} & =\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3} & =-\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
e^{(-2 \pi / 3) i} & =\cos \frac{-2 \pi}{3}+i \sin \frac{-2 \pi}{3} & =-\frac{1}{2}-\frac{\sqrt{3}}{2} i
\end{array}
$$

Theorem (Appendix A, Theorem $3-n^{\text {th }}$ Roots of Unity)
For $n \geq 1$, the (complex) solutions to $z^{n}=1$ are

$$
z=e^{(2 \pi k / n) i} \text { for } k=0,1,2, \ldots, n-1
$$

For example, the sixth roots of unity are

Theorem (Appendix A, Theorem $3-n^{\text {th }}$ Roots of Unity)
For $n \geq 1$, the (complex) solutions to $z^{n}=1$ are

$$
z=e^{(2 \pi k / n) i} \text { for } k=0,1,2, \ldots, n-1
$$

For example, the sixth roots of unity are

$$
\begin{aligned}
& z=e^{(2 \pi k / 6) i}=e^{(\pi k / 3) i} \text { for } k=0,1,2,3,4,5 . \\
& \qquad \begin{array}{l|ll}
k & z & \\
\hline 0 & e^{0 i} & =1 \\
1 & e^{(\pi / 3) i} & =\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
2 & e^{(2 \pi / 3) i} & =-\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
3 & e^{\pi i} & =-1 \\
4 & e^{(4 \pi / 3) i} & =-\frac{1}{2}-\frac{\sqrt{3}}{2} i \\
5 & e^{(5 \pi / 3) i} & =\frac{1}{2}-\frac{\sqrt{3}}{2} i
\end{array}
\end{aligned}
$$

Example

Find all complex numbers z such that $z^{4}=2(\sqrt{3} i-1)$, and express each in the form $a+b i$.

Example

Find all complex numbers z such that $z^{4}=2(\sqrt{3} i-1)$, and express each in the form $a+b i$.

First, convert $2(\sqrt{3} i-1)=-2+2 \sqrt{3} i$ to polar form:

$$
\left|z^{4}\right|=\sqrt{(-2)^{2}+(2 \sqrt{3})^{2}}=\sqrt{16}=4
$$

If $\phi=\arg \left(z^{4}\right)$, then

$$
\cos \phi=\frac{-2}{4}=\frac{-1}{2} \quad \sin \phi=\frac{2 \sqrt{3}}{4}=\frac{\sqrt{3}}{2}
$$

Thus, $\phi=\frac{2 \pi}{3}$, and

$$
z^{4}=4 e^{(2 \pi / 3) i}
$$

Example (continued)

So $z^{4}=4 e^{(2 \pi / 3) i}$.
Let $z=r e^{i \theta}$. Then $z^{4}=r^{4} e^{i 4 \theta}$, so $r^{4}=4$ and $4 \theta=\frac{2}{3} \pi+2 \pi k$ for $k=0,1,2$, or 3 .

Since $r^{4}=4, r^{2}= \pm 2$. But r is real, and so $r^{2}=2$, implying $r= \pm \sqrt{2}$. However $r \geq 0$, and therefore $r=\sqrt{2}$.

Since $4 \theta=\frac{2}{3} \pi+2 \pi k, k=0,1,2,3$,

$$
\begin{aligned}
\theta & =\frac{2 \pi}{12}+\frac{2 \pi k}{4} \\
& =\frac{\pi}{6}+\frac{\pi k}{2} \\
& =\frac{\pi(3 k+1)}{6}
\end{aligned}
$$

for $k=0,1,2,3$.

Example (continued)
$r=\sqrt{2}$ and $\theta=\left(\frac{3 k+1}{6}\right) \pi, k=0,1,2,3$.

$$
\begin{array}{lll}
k=0: & z=\sqrt{2} e^{(\pi / 6) i}=\sqrt{2}\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)=\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2} i \\
k=1: & z=\sqrt{2} e^{(2 \pi / 3) i}=\sqrt{2}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=-\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2} i \\
k=2: & z=\sqrt{2} e^{(7 \pi / 6) i}=\sqrt{2}\left(-\frac{\sqrt{3}}{2}-\frac{1}{2} i\right)=-\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2} i \\
k=3: & z=\sqrt{2} e^{(5 \pi / 3) i}=\sqrt{2}\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)=\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{2} i
\end{array}
$$

Therefore, the fourth roots of $2(\sqrt{3} i-1)$ are:

$$
\pm\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2} i\right) \text { and } \pm\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{2} i\right) .
$$

Real Quadratics

Definition

A quadratic is an expression of the form $a x^{2}+b x+c$ where $a \neq 0$.
To find the roots of a quadratic, we can use the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The expression $b^{2}-4 a c$ in the quadratic formula is called the discriminant. If $a, b, c \in \mathbb{R}$ then we call $a x^{2}+b x+c$ a real quadratic. In this case,

- if $b^{2}-4 a c \geq 0$, then the roots of the quadratic are real;
- if $b^{2}-4 a c<0$, then the roots of the quadratic are complex conjugates of each other. In this case we call the quadratic irreducible.

Example

The quadratic $x^{2}-14 x+58$ has roots

$$
\begin{aligned}
x & =\frac{14 \pm \sqrt{196-4 \times 58}}{2} \\
& =\frac{14 \pm \sqrt{196-232}}{2} \\
& =\frac{14 \pm \sqrt{-36}}{2} \\
& =\frac{14 \pm 6 i}{2} \\
& =7 \pm 3 i
\end{aligned}
$$

so the roots are $7+3 i$ and $7-3 i$.

Conversely, given $u=a+b i$ with $b \neq 0$, there is an irreducible quadratic having roots u and \bar{u}.

Example

Find an irreducible quadratic with $u=5-2 i$ as a root. What is the other root?

Conversely, given $u=a+b i$ with $b \neq 0$, there is an irreducible quadratic having roots u and \bar{u}.

Example

Find an irreducible quadratic with $u=5-2 i$ as a root. What is the other root?

Solution.

$$
\begin{aligned}
(x-u)(x-\bar{u}) & =(x-(5-2 i))(x-(5+2 i)) \\
& =x^{2}-(5-2 i) x-(5+2 i) x+(5-2 i)(5+2 i) \\
& =x^{2}-10 x+29
\end{aligned}
$$

Therefore, $x^{2}-10 x+29$ is an irreducible quadratic with roots $5-2 i$ and $5+2 i$.
Notice that $-10=-(u+\bar{u})$ and $29=u \bar{u}=|u|^{2}$.

Example

Find an irreducible quadratic with root $u=-3+4 i$, and find the other root.

Example

Find an irreducible quadratic with root $u=-3+4 i$, and find the other root.
Solution.

$$
\begin{aligned}
(x-u)(x-\bar{u}) & =(x-(-3+4 i))(x-(-3-4 i)) \\
& =x^{2}+6 x+25
\end{aligned}
$$

Thus $x^{2}+6 x+25$ has roots $-3+4 i$ and $-3-4 i$.

Quadratics with Complex Coefficients

Example

Find the roots of the quadratic $x^{2}-(3-2 i) x+(5-i)=0$.

Quadratics with Complex Coefficients

Example

Find the roots of the quadratic $x^{2}-(3-2 i) x+(5-i)=0$.
Using the quadratic formula

$$
x=\frac{3-2 i \pm \sqrt{(-(3-2 i))^{2}-4(5-i)}}{2}
$$

Now,

$$
(-(3-2 i))^{2}-4(5-i)=5-12 i-20+4 i=-15-8 i
$$

so

$$
x=\frac{3-2 i \pm \sqrt{-15-8 i}}{2}
$$

To find $\pm \sqrt{-15-8 i}$, solve $z^{2}=-15-8 i$ for z.

Example (continued)

Let $z=a+b i$ and $z^{2}=-15-8 i$. Then

$$
\left(a^{2}-b^{2}\right)+2 a b i=-15-8 i
$$

so $a^{2}-b^{2}=-15$ and $2 a b=-8$.
Solving for a and b gives us $z= \pm(1-4 i)$.
Therefore,

$$
\begin{gathered}
x=\frac{3-2 i \pm(1-4 i)}{2} \\
\frac{3-2 i+(1-4 i)}{2}=\frac{4-6 i}{2}=2-3 i \\
\frac{3-2 i-(1-4 i)}{2}=\frac{2+2 i}{2}=1+i
\end{gathered}
$$

Thus the roots of $x^{2}-(3-2 i) x+(5-i)$ are $2-3 i$ and $1+i$.

Example

Verify that $u_{1}=(4-i)$ is a root of

$$
x^{2}-(2-3 i) x-(10+6 i)
$$

and find the other root, u_{2}.

Example

Verify that $u_{1}=(4-i)$ is a root of

$$
x^{2}-(2-3 i) x-(10+6 i)
$$

and find the other root, u_{2}.

$$
\begin{aligned}
u_{1}^{2}-(2-3 i) u_{1} & -(10+6 i) \\
& =(4-i)^{2}-(2-3 i)(4-i)-(10+6 i) \\
& =(15-8 i)-(5-14 i)-(10+6 i) \\
& =0
\end{aligned}
$$

so $u_{1}=(4-i)$ is a root.

Example (continued)

Recall that if u_{1} and u_{2} are the roots of the quadratic, then

$$
u_{1}+u_{2}=(2-3 i) \text { and } u_{1} u_{2}=-(10+6 i) .
$$

Since $u_{1}=4-i$ and $u_{1}+u_{2}=2-3 i$,

$$
u_{2}=2-3 i-u_{1}=2-3 i-(4-i)=-2-2 i
$$

Therefore, the other root is $u_{2}=-2-2 i$.
You can easily verify your answer by computing $u_{1} u_{2}$:

$$
u_{1} u_{2}=(4-i)(-2-2 i)=-10-6 i=-(10+6 i) .
$$

Summary

(1) Roots of Unity
(2) Finding Roots
(3) Quadratic Polynomials

