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Roots of Unity

Example

Find all complex number z so that z3 = 1, i.e., find the cube roots
of unity. Express each root in the form a + bi .

Let z = re iθ. Since 1 = 1e i0 in polar form, we want to solve(
re iθ
)3

= 1e i0,

i.e.,
r3e i3θ = 1e i0.

Thus r3 = 1 and 3θ = 0 + 2πk = 2πk for some integer k .
Since r3 = 1 and r is real, r = 1.
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Example (continued)

Now 3θ = 2πk, so θ = 2π
3 k .

k θ e iθ

−3 −2π e−2πi = 1

−2 −4
3π e(−4π/3)i = e(2π/3)i

−1 −2
3π e(−2π/3)i = e(−2π/3)i

0 0 e0i = 1

1 2
3π e(2π/3)i = e(2π/3)i

2 4
3π e(4π/3)i = e(−2π/3)i

3 2π e2πi = 1

The three cube roots of unity are

e0πi = 1

e(2π/3)i = cos 2π
3 + i sin 2π

3 = −1
2 +

√
3
2 i

e(−2π/3)i = cos −2π3 + i sin −2π3 = −1
2 −

√
3
2 i
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Theorem (Appendix A, Theorem 3 – nth Roots of Unity)

For n ≥ 1, the (complex) solutions to zn = 1 are

z = e(2πk/n)i for k = 0, 1, 2, . . . , n − 1.

For example, the sixth roots of unity are

z = e(2πk/6)i = e(πk/3)i for k = 0, 1, 2, 3, 4, 5.

k z

0 e0i = 1

1 e(π/3)i = 1
2 +

√
3
2 i

2 e(2π/3)i = −1
2 +

√
3
2 i

3 eπi = −1

4 e(4π/3)i = −1
2 −

√
3
2 i

5 e(5π/3)i = 1
2 −

√
3
2 i
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Example

Find all complex numbers z such that z4 = 2(
√

3i − 1), and
express each in the form a + bi .

First, convert 2(
√

3i − 1) = −2 + 2
√

3i to polar form:

|z4| =

√
(−2)2 + (2

√
3)2 =

√
16 = 4.

If φ = arg(z4), then

cosφ =
−2

4
=
−1

2
sinφ =

2
√

3

4
=

√
3

2

Thus, φ = 2π
3 , and

z4 = 4e(2π/3)i .
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Example (continued)

So z4 = 4e(2π/3)i .

Let z = re iθ. Then z4 = r4e i4θ, so r4 = 4 and 4θ = 2
3π + 2πk for

k = 0, 1, 2, or 3.

Since r4 = 4, r2 = ±2. But r is real, and so r2 = 2, implying
r = ±

√
2. However r ≥ 0, and therefore r =

√
2.

Since 4θ = 2
3π + 2πk, k = 0, 1, 2, 3,

θ =
2π

12
+

2πk

4

=
π

6
+
πk

2

=
π(3k + 1)

6

for k = 0, 1, 2, 3.
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Example (continued)

r =
√

2 and θ =
(
3k+1
6

)
π, k = 0, 1, 2, 3.

k = 0 : z =
√

2e(π/6)i =
√

2(
√
3
2 + 1

2 i) =
√
6
2 +

√
2
2 i

k = 1 : z =
√

2e(2π/3)i =
√

2(−1
2 +

√
3
2 i) = −

√
2
2 +

√
6
2 i

k = 2 : z =
√

2e(7π/6)i =
√

2(−
√
3
2 −

1
2 i) = −

√
6
2 −

√
2
2 i

k = 3 : z =
√

2e(5π/3)i =
√

2( 1
2 −

√
3
2 i) =

√
2
2 −

√
6
2 i

Therefore, the fourth roots of 2(
√

3i − 1) are:

±

(√
6

2
+

√
2

2
i

)
and ±

(√
2

2
−
√

6

2
i

)
.
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Real Quadratics

Definition

A quadratic is an expression of the form ax2 + bx + c where a 6= 0.

To find the roots of a quadratic, we can use the quadratic formula:

x =
−b ±

√
b2 − 4ac

2a
.

The expression b2 − 4ac in the quadratic formula is called the
discriminant. If a, b, c ∈ R then we call ax2 + bx + c a real
quadratic. In this case,

if b2 − 4ac ≥ 0, then the roots of the quadratic are real;

if b2 − 4ac < 0, then the roots of the quadratic are complex
conjugates of each other. In this case we call the quadratic
irreducible.
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Example

The quadratic x2 − 14x + 58 has roots

x =
14±

√
196− 4× 58

2

=
14±

√
196− 232

2

=
14±

√
−36

2

=
14± 6i

2
= 7± 3i ,

so the roots are 7 + 3i and 7− 3i .
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Conversely, given u = a + bi with b 6= 0, there is an irreducible
quadratic having roots u and u.

Example

Find an irreducible quadratic with u = 5− 2i as a root. What is
the other root?

Solution.

(x − u)(x − u) = (x − (5− 2i))(x − (5 + 2i))

= x2 − (5− 2i)x − (5 + 2i)x + (5− 2i)(5 + 2i)

= x2 − 10x + 29.

Therefore, x2 − 10x + 29 is an irreducible quadratic with roots
5− 2i and 5 + 2i .
Notice that −10 = −(u + u) and 29 = uu = |u|2.
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Example

Find an irreducible quadratic with root u = −3 + 4i , and find the
other root.
Solution.

(x − u)(x − u) = (x − (−3 + 4i))(x − (−3− 4i))

= x2 + 6x + 25.

Thus x2 + 6x + 25 has roots −3 + 4i and −3− 4i .
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Quadratics with Complex Coefficients

Example

Find the roots of the quadratic x2 − (3− 2i)x + (5− i) = 0.

Using the quadratic formula

x =
3− 2i ±

√
(−(3− 2i))2 − 4(5− i)

2

Now,

(−(3− 2i))2 − 4(5− i) = 5− 12i − 20 + 4i = −15− 8i ,

so

x =
3− 2i ±

√
−15− 8i

2

To find ±
√
−15− 8i , solve z2 = −15− 8i for z .
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Example (continued)

Let z = a + bi and z2 = −15− 8i . Then

(a2 − b2) + 2abi = −15− 8i ,

so a2 − b2 = −15 and 2ab = −8.

Solving for a and b gives us z = ±(1− 4i).

Therefore,

x =
3− 2i ± (1− 4i)

2
;

3− 2i + (1− 4i)

2
=

4− 6i

2
= 2− 3i ,

3− 2i − (1− 4i)

2
=

2 + 2i

2
= 1 + i .

Thus the roots of x2 − (3− 2i)x + (5− i) are 2− 3i and 1 + i .
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Example

Verify that u1 = (4− i) is a root of

x2 − (2− 3i)x − (10 + 6i)

and find the other root, u2.

u21 − (2− 3i)u1 − (10 + 6i)

= (4− i)2 − (2− 3i)(4− i)− (10 + 6i)

= (15− 8i)− (5− 14i)− (10 + 6i)

= 0,

so u1 = (4− i) is a root.
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Example (continued)

Recall that if u1 and u2 are the roots of the quadratic, then

u1 + u2 = (2− 3i) and u1u2 = −(10 + 6i).

Since u1 = 4− i and u1 + u2 = 2− 3i ,

u2 = 2− 3i − u1 = 2− 3i − (4− i) = −2− 2i .

Therefore, the other root is u2 = −2− 2i .

You can easily verify your answer by computing u1u2:

u1u2 = (4− i)(−2− 2i) = −10− 6i = −(10 + 6i).
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