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Recall

Suppose that z = a + bi is a complex number.

The conjugate of z is the complex number

z = a− bi .

The absolute value or modulus of z is

|z | =
√
a2 + b2.
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Properties of the Conjugate and Absolute Value (p. 507)

Let z and w be complex numbers.

C1. z ± w = z ± w .

C2. (zw) = z w .

C3.
(
z
w

)
= z

w .

C4. (z) = z .

C5. z is real if and only if z = z .

C6. z · z = |z |2.

C7. 1
z = z

|z|2 .

C8. |z | ≥ 0 for all complex numbers z

C9. |z | = 0 if and only if z = 0.

C10. |zw | = |z | |w |.
C11.

∣∣ z
w

∣∣ = |z|
|w | .

C12. Triangle Inequality |z + w | ≤ |z |+ |w |.
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The Complex Plane

Represent z = a + bi as a point (a, b) in the plane, where the
x-axis is the real axis and the y -axis is the imaginary axis.

b

a

0 Re

Im
(a, b)

Real numbers: a + 0i lie on the
real axis.

Pure imaginary numbers: 0 + bi lie
on the imaginary axis.

|z | =
√
a2 + b2 is the distance from z to the origin.

z is the reflection of z in the x-axis.
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Addition

If z = a + bi and w = c + di , then z + w = (a + c) + (b + d)i .
Geometrically, we have:

0 Re

Im

w

z

z + w

ac a + c

b

d

b + d

0, z , w , and z + w are the vertices of a parallelogram.
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Subtraction

If z = a + bi and w = c + di , then

|z − w | =
√

(a− c)2 + (b − d)2.

c − a

b − d

0 Re

Im

w = c + di

z = a + bi

a c

b

d

This is used to derive the triangle inequality: |z + w | ≤ |z |+ |w |.
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Triangle Inequality

|z|

|w|

|z + w|

0 Re

Im

z

w

z + w

|z + w | ≤ |z |+ |w |.
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Polar Form

Suppose z = a + bi , and let r = |z | =
√
a2 + b2. Then r is the

distance from z to the origin. Denote by θ the angle that the line
through 0 and z makes with the positive x-axis.

a

r
b

0 Re

Im

z = a + bi

θ

Then θ is an angle defined by cos θ = a
r and sin θ = b

r , so

z = r cos θ + r sin θi = r(cos θ + i sin θ).

θ is called the argument of z , and is denoted arg z .
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Definitions

The principal argument of z = r(cos θ + i sin θ) is the angle θ
such that

−π < θ ≤ π

(θ is measured in radians).

If z is a complex number with |z | = r and arg z = θ, then we
write

z = re iθ = r(cos θ + i sin θ).

Note that since arg z is not unique, re iθ is a polar form of z , not
the polar form of z . Adding any multiple of 2π will give another
valid θ.
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Examples

Convert each of the following complex numbers to polar form.

1 3i = 3e(π/2)i

2 −1− i =
√

2e(−3π/4)i

3
√

3− i = 2e−(π/6)i

4
√

3 + 3i = 2
√

3e(π/3)i
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Problems involving multiplication of complex numbers can often be
simplified by using polar forms of the complex numbers.

Theorem (Appendix A, Theorem 1 – Multiplication Rule)

If z1 = r1e
iθ1 and z2 = r2e

iθ2 are complex numbers, then

z1z2 = r1r2e
i(θ1+θ2).

Theorem (Appendix A, Theorem 2 – De Moivre’s Theorem)

If θ is any angle, then
(e iθ)n = e inθ

for all integers n.
(This is an obvious consequence of Theorem 1 when n ≥ 0, but
also holds when n < 0.)
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Example

Express (1− i)6(
√

3 + i)3 in the form a + bi .

Solution.
Let z = 1− i =

√
2e(−π/4)i and w =

√
3 + i = 2e(π/6)i . Then we

want to compute z6w3.

z6w3 = (
√

2e(−π/4)i )6(2e(π/6)i )3

= (23e(−6π/4)i )(23e(3π/6)i )

= (8e(−3π/2)i )(8e(π/2)i )

= 64e−πi

= 64eπi

= 64(cosπ + i sinπ)

= −64.
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Example

Express
(
1
2 −

√
3
2 i
)17

in the form a + bi .

Solution.
Let z = 1

2 −
√
3
2 i = e(−π/3)i .

Then

z17 =
(
e(−π/3)i

)17
= e(−17π/3)i

= e(π/3)i

= cos
π

3
+ i sin

π

3

=
1

2
+

√
3

2
i .
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Example
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π

3

=
1

2
+
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Roots of Unity

Example

Find all complex number z so that z3 = 1, i.e., find the cube roots
of unity. Express each root in the form a + bi .

Let z = re iθ. Since 1 = 1e i0 in polar form, we want to solve(
re iθ
)3

= 1e i0,

i.e.,
r3e i3θ = 1e i0.

Thus r3 = 1 and 3θ = 0 + 2πk = 2πk for some integer k .
Since r3 = 1 and r is real, r = 1.
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Example (continued)

Now 3θ = 2πk, so θ = 2π
3 k .

k θ e iθ

−3 −2π e−2πi = 1

−2 −4
3π e(−4π/3)i = e(2π/3)i

−1 −2
3π e(−2π/3)i = e(−2π/3)i

0 0 e0i = 1

1 2
3π e(2π/3)i = e(2π/3)i

2 4
3π e(4π/3)i = e(−2π/3)i

3 2π e2πi = 1

The three cube roots of unity are

e0πi = 1

e(2π/3)i = cos 2π
3 + i sin 2π

3 = −1
2 +

√
3
2 i

e(−2π/3)i = cos −2π3 + i sin −2π3 = −1
2 −

√
3
2 i
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Theorem (Appendix A, Theorem 3 – nth Roots of Unity)

For n ≥ 1, the (complex) solutions to zn = 1 are

z = e(2πk/n)i for k = 0, 1, 2, . . . , n − 1.

For example, the sixth roots of unity are

z = e(2πk/6)i = e(πk/3)i for k = 0, 1, 2, 3, 4, 5.

k z

0 e0i = 1

1 e(π/3)i = 1
2 +

√
3
2 i

2 e(2π/3)i = −1
2 +

√
3
2 i

3 eπi = −1

4 e(4π/3)i = −1
2 −

√
3
2 i

5 e(5π/3)i = 1
2 −

√
3
2 i



Properties of Absolute Value The Complex Plane Polar Form Roots of Unity

Theorem (Appendix A, Theorem 3 – nth Roots of Unity)

For n ≥ 1, the (complex) solutions to zn = 1 are

z = e(2πk/n)i for k = 0, 1, 2, . . . , n − 1.

For example, the sixth roots of unity are

z = e(2πk/6)i = e(πk/3)i for k = 0, 1, 2, 3, 4, 5.

k z

0 e0i = 1

1 e(π/3)i = 1
2 +

√
3
2 i

2 e(2π/3)i = −1
2 +

√
3
2 i

3 eπi = −1

4 e(4π/3)i = −1
2 −

√
3
2 i

5 e(5π/3)i = 1
2 −

√
3
2 i



Properties of Absolute Value The Complex Plane Polar Form Roots of Unity

Summary

1 Properties of Absolute Value

2 The Complex Plane

3 Polar Form

4 Roots of Unity


	Properties of Absolute Value
	The Complex Plane
	Polar Form
	Roots of Unity

