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Recall

Suppose that z = a + bi is a complex number.

@ The conjugate of z is the complex number
Z=a— bi.

@ The absolute value or modulus of z is

|z| = Va2 + b2
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Properties of the Conjugate and Absolute Value (p. 507)

Let z and w be complex numbers.
Cl. ztw=Z+w.

C2. (zw) =z w.

C3. (£)=2.

C4. (2)=2z

Ch. zis real if and only if Z = z.
C6. z-z=|z|2

C7. 2 =%

C8. |z| > 0 for all complex numbers z
C9. |z| =0 if and only if z=0.
C10. |zw| = |z| |w|.
||
C1l. |w| - \z|
C12. Triangle Inequality |z + w| < |z| + |w|.
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The Complex Plane

Represent z = a + bi as a point (a, b) in the plane, where the
x-axis is the real axis and the y-axis is the imaginary axis.

Im @ Real numbers: a+ 0i lie on the
a .(a, b) real axis.
//’/ @ Pure imaginary numbers: 0 + bi lie
e b on the imaginary axis.
0 Re

e |z| = Va® + b? is the distance from z to the origin.

@ Z is the reflection of z in the x-axis.
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Addition

If z=a+ bi and w = c+ di, then z+w = (a+ c) + (b + d)i.
Geometrically, we have:

Im
Z4+w
b+d
w 7
d o
-
-
-
.
///
b o z
0 i . e Re

0, z, w, and z + w are the vertices of a parallelogram.
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Subtraction

If z=a+ bi and w = ¢ + di, then

z—wl=/(a— )+ (b d).

Im
z=a+bi
b
d R w=c+di
0 . . Re

This is used to derive the triangle inequality: |z + w| < |z| + |w]|.
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Triangle Inequality
zZ4+w Im
.\\\
We \\\ \\\ . [w|
Iz 4wl )

[z +w| < |z[ +|w].

Re
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Polar Form

Suppose z = a+ bi, and let r = |z| = v/a® + b?. Then r is the
distance from z to the origin. Denote by 6 the angle that the line
through 0 and z makes with the positive x-axis.

Im
z=a+bi
r
b
0
0 a Re
Then 0 is an angle defined by cosf) = 2 and sin = %, so

z=rcosf+ rsinfi = r(cosf + isinf).

0 is called the argument of z, and is denoted arg z.
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@ The principal argument of z = r(cos 6 + isinf) is the angle 0
such that
—rT<O6<nm

(6 is measured in radians).

@ If z is a complex number with |z| = r and argz = 0, then we
write

z = re" = r(cosf +isinf).

Note that since arg z is not unique, re’? is a polar form of z, not

the polar form of z. Adding any multiple of 27 will give another
valid 6.
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Convert each of the following complex numbers to polar form.
Q 3i=
Q@ -1-i=
Q@ V3-i=
Q@ V3+3i=
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Convert each of the following complex numbers to polar form.
Q 3i = 3e(™/2)i
Q -1-i= \/56(737r/4)i
Q V3 —i=2e(7/0)i
Q 3+ 3i = 2¢/3e(™/3)i
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Problems involving multiplication of complex numbers can often be
simplified by using polar forms of the complex numbers.

Theorem (Appendix A, Theorem 1 — Multiplication Rule)

If z1 = ne't and zo = re®2 are complex numbers, then

Z1Zp = r1r2e’(91+02).
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Problems involving multiplication of complex numbers can often be
simplified by using polar forms of the complex numbers.

Theorem (Appendix A, Theorem 1 — Multiplication Rule)

If z1 = ne't and zo = re®2 are complex numbers, then

Z1Zp = r1r2e’(91+02).

N

Theorem (Appendix A, Theorem 2 — De Moivre's Theorem)
If 0 is any angle, then

(eiG)n _ ein9
for all integers n.

(This is an obvious consequence of Theorem 1 when n > 0, but
also holds when n < 0.)

N
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Express (1 — i)%(v/3 + i)3 in the form a + bi.
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Example
Express (1 — i)%(v/3 + i)3 in the form a + bi.

Solution.

letz=1—-1/= \/_e ~m/4)i and w = \/§+i:2e(”/6)i. Then we

want to compute zow3.

Z W _ (\/Ee(—w/4)i)6(2€(7r/6)i)3
_ (23e(—67r/4)i)(23e(37r/6)i)
(86( 3m/2)i )(8€(Tr/2)i)

—i

64e
64e
64(cos m + isin )
—64.
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17
Express (% — ?l) in the form a + bi.
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Example

17
Express (% — ?l) in the form a + bi.

Solution.
Let z = % — ‘/7§i = e(=7/3)i
Then

17 _ (e(—w/3)i> 17

_ o(=177/3)i

— o(m/3)i

= cos T + isin il

B 3 3
1

_L1y 5

2 2




Roots of Unity
®00

Roots of Unity

Find all complex number z so that z3 = 1, i.e., find the cube roots
of unity. Express each root in the form a + bi.
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Roots of Unity

Example

Find all complex number z so that z3 = 1, i.e., find the cube roots
of unity. Express each root in the form a + bi.

Let z = re?. Since 1 = 1€/ in polar form, we want to solve

2\ 3 ,
(re’e) = 1e™,

i.e.,
r3el39 _ 16’0.

Thus r®> =1 and 30 = 0 + 2wk = 27k for some integer k.
Since r> =1 and ris real, r = 1.
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Example (continued)

Now 30 = 27k, so 0 = k.

k 0 ei?

—3| —2n | e2™ =1

-9 —%7‘(’ e(7471'/3)i — e(27r/3)i
-1 —%71‘ e(—27r/3)i — e(—27r/3)i
0 0 2V =1

1 %7‘( e(27r/3)i — e(27r/3)i
2 %77 e(47r/3)i _ e(—27r/3)i
3| 2m | e =1

The three cube roots of unity are

eO7rl

e/ = cosZ +isinZ = —

e(=2/3)i  — (os —_5” + Jsin —_§” = —

[l
—

-~

-

NI= N|—
+
S
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Theorem (Appendix A, Theorem 3 — nth Roots of Unity)

For n > 1, the (complex) solutions to z" =1 are

z=2eC®™/"i for k =0,1,2,....,n— 1.

For example, the sixth roots of unity are
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Theorem (Appendix A, Theorem 3 — nth Roots of Unity)

For n > 1, the (complex) solutions to z" =1 are

z=2eC®™/"i for k =0,1,2,....,n— 1.

For example, the sixth roots of unity are

z = e(mK/0)i — o(TK/3)i for | = 0,1,2,3,4,5.

k| z

0 e =1

1| em/3)i  — % + ?i
2 | e/ = 14 V3,
3|e™ =-1

4 e(47r/3)i — —% — @/
5 e(57r/3)i % _ ?I
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Summary
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