Properties of Absolute Value	The Complex Plane	Polar Form 000000	Roots of Unity

Linear Methods (Math 211) Lecture 17 - Appendix A

(with slides adapted from K. Seyffarth)

David Roe

October 21, 2013

Properties	of	Absolute	Value
00			

Polar Form

Roots of Unity

Recall

- Complex Numbers: Basic Definitions
- Arithmetic with Complex Numbers
- Onjugates and Division

Properties	of	Absolute	Value
00			

Polar Form

Roots of Unity

Properties of Absolute Value

2 The Complex Plane

Properties	of	Absolute	Value
•0			

Polar Form

Roots of Unity

Recall

Suppose that z = a + bi is a complex number.

• The conjugate of z is the complex number

$$\overline{z} = a - bi$$
.

• The absolute value or modulus of z is

$$|z|=\sqrt{a^2+b^2}.$$

Properties of Absolute Value	The Complex Plane	Polar Form	Roots of Unity
0	0000	000000	000

Properties of the Conjugate and Absolute Value (p. 507)

Let z and w be complex numbers.
C1. $\overline{z \pm w} = \overline{z} \pm \overline{w}$.
C2. $\overline{(zw)} = \overline{z} \ \overline{w}$.
C3. $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$.
C4. $\overline{(\overline{z})} = z$.
C5. z is real if and only if $\overline{z} = z$.
C6. $z \cdot \overline{z} = z ^2$.
C7. $\frac{1}{z} = \frac{\overline{z}}{ z ^2}$.
C8. $ z \ge 0$ for all complex numbers z
C9. $ z = 0$ if and only if $z = 0$.
C10. $ zw = z w $.
C11. $\left \frac{z}{w}\right = \frac{ z }{ w }$.
C12. Triangle Inequality $ z + w \le z + w $.

Properties of Absolute Value

The Complex Plane

Polar Form 000000 Roots of Unity

The Complex Plane

Represent z = a + bi as a point (a, b) in the plane, where the x-axis is the real axis and the y-axis is the imaginary axis.

- Real numbers: *a* + 0*i* lie on the real axis.
- Pure imaginary numbers: 0 + *bi* lie on the imaginary axis.

• $|z| = \sqrt{a^2 + b^2}$ is the distance from z to the origin.

• \overline{z} is the reflection of z in the x-axis.

Properties of Absolute Value	The Complex Plane ○●○○	Polar Form 000000	Roots of Unity
Addition			

If z = a + bi and w = c + di, then z + w = (a + c) + (b + d)i. Geometrically, we have:

0, z, w, and z + w are the vertices of a parallelogram.

Properties	of Absolute	Value
C		

Polar Form

Roots of Unity

Subtraction

If
$$z = a + bi$$
 and $w = c + di$, then

$$|z-w| = \sqrt{(a-c)^2 + (b-d)^2}.$$

This is used to derive the triangle inequality: $|z + w| \le |z| + |w|$.

Properties of Absolute Value

The Complex Plane

Polar Form

Roots of Unity

Triangle Inequality

Properties of Absolute Value	The Complex Plane	Polar Form ●00000	Roots of Unity
Polar Form			

Suppose z = a + bi, and let $r = |z| = \sqrt{a^2 + b^2}$. Then r is the distance from z to the origin. Denote by θ the angle that the line through 0 and z makes with the positive x-axis.

Then θ is an angle defined by $\cos \theta = \frac{a}{r}$ and $\sin \theta = \frac{b}{r}$, so

$$z = r\cos\theta + r\sin\theta i = r(\cos\theta + i\sin\theta).$$

 θ is called the argument of z, and is denoted arg z.

Properties of Absolute Value	The Complex Plane	Polar Form	Roots of Unity
00	0000	00000	000

Definitions

• The principal argument of $z = r(\cos \theta + i \sin \theta)$ is the angle θ such that

$$-\pi < \theta \le \pi$$

(θ is measured in radians).

• If z is a complex number with |z| = r and $\arg z = \theta$, then we write

$$z = re^{i\theta} = r(\cos\theta + i\sin\theta).$$

Note that since $\arg z$ is not unique, $re^{i\theta}$ is a polar form of z, not the polar form of z. Adding any multiple of 2π will give another valid θ .

Properties of Absolute Value	The Complex Plane	Polar Form	Roots of Unity
00	0000	00000	000

Examples

Convert each of the following complex numbers to polar form.

- **1** 3*i* =
- **2** -1 i =
- (a) $\sqrt{3} i =$ (a) $\sqrt{3} + 3i =$

Properties of Absolute Value	The Complex Plane	Polar Form	Roots of Unity
00	0000	00000	000

Examples

Convert each of the following complex numbers to polar form.

1
$$3i = 3e^{(\pi/2)i}$$

2 $-1 - i = \sqrt{2}e^{(-3\pi/4)i}$
3 $\sqrt{3} - i = 2e^{-(\pi/6)i}$
4 $\sqrt{3} + 3i = 2\sqrt{3}e^{(\pi/3)i}$

Properties of Absolute Value	The Complex Plane	Polar Form	Roots of Unity
00	0000	000000	000

Problems involving multiplication of complex numbers can often be simplified by using polar forms of the complex numbers.

Theorem (Appendix A, Theorem 1 – Multiplication Rule) If $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$ are complex numbers, then $z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$.

Properties	of	Absolute	Value	
00				

Polar Form 000000

Problems involving multiplication of complex numbers can often be simplified by using polar forms of the complex numbers.

Theorem (Appendix A, Theorem 1 – Multiplication Rule) If $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$ are complex numbers, then $z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$.

Theorem (Appendix A, Theorem 2 - De Moivre's Theorem)

If θ is any angle, then

$$(e^{i\theta})^n = e^{in\theta}$$

for all integers n. (This is an obvious consequence of Theorem 1 when $n \ge 0$, but also holds when n < 0.)

Properties of Absolute Value	The Complex Plane	Polar Form 0000●0	Roots of Unity 000
Example			
	$(\overline{3}+i)^3$ in the form <i>a</i>	+ <i>bi</i> .	
	, ,		

Properties of Absolute Value	The Complex Plane	Polar Form 0000●0	Roots of Unity

Example

Express
$$(1-i)^6(\sqrt{3}+i)^3$$
 in the form $a+bi$.

Solution.

Let $z = 1 - i = \sqrt{2}e^{(-\pi/4)i}$ and $w = \sqrt{3} + i = 2e^{(\pi/6)i}$. Then we want to compute z^6w^3 .

$$z^{6}w^{3} = (\sqrt{2}e^{(-\pi/4)i})^{6}(2e^{(\pi/6)i})^{3}$$

= $(2^{3}e^{(-6\pi/4)i})(2^{3}e^{(3\pi/6)i})$
= $(8e^{(-3\pi/2)i})(8e^{(\pi/2)i})$
= $64e^{-\pi i}$
= $64e^{\pi i}$
= $64(\cos \pi + i \sin \pi)$
= $-64.$

Properties of a	Absolute Value	The Complex Plane	Polar Form 00000●	Roots of Unity 000
_				
	mple			
Exp	ress $\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^{17}$	in the form $a + bi$.		

Properties	of	Absolute	Value
00			

Polar Form 00000● Roots of Unity

Example

Express
$$\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^{17}$$
 in the form $a + bi$.

Solution.

Let
$$z = \frac{1}{2} - \frac{\sqrt{3}}{2}i = e^{(-\pi/3)i}$$
.
Then

$$e^{17} = \left(e^{(-\pi/3)i}\right)^{17}$$

= $e^{(-17\pi/3)i}$
= $e^{(\pi/3)i}$
= $\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$
= $\frac{1}{2} + \frac{\sqrt{3}}{2}i$.

Properties of Absolute Value	The Complex Plane	Polar Form 000000	Roots of Unity •00
Roots of Unity			

Example

Find **all** complex number z so that $z^3 = 1$, i.e., find the cube roots of unity. Express each root in the form a + bi.

Properties of Absolute Value	The Complex Plane	Polar Form 000000	Roots of Unity •00
Roots of Unity			

Example

Find **all** complex number z so that $z^3 = 1$, i.e., find the cube roots of unity. Express each root in the form a + bi.

Let $z = re^{i\theta}$. Since $1 = 1e^{i0}$ in polar form, we want to solve

$$\left(re^{i\theta}\right)^3 = 1e^{i0}$$

i.e.,

$$r^3e^{i3\theta}=1e^{i0}.$$

Thus $r^3 = 1$ and $3\theta = 0 + 2\pi k = 2\pi k$ for some integer k. Since $r^3 = 1$ and r is real, r = 1.

Polar Form

Roots of Unity

Example (continued)

Now
$$3\theta = 2\pi k$$
, so $\theta = \frac{2\pi}{3}k$.

The three cube roots of unity are

$$\begin{array}{rcl} e^{0\pi i} & = 1 \\ e^{(2\pi/3)i} & = & \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} & = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \\ e^{(-2\pi/3)i} & = & \cos\frac{-2\pi}{3} + i\sin\frac{-2\pi}{3} & = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \end{array}$$

Properties of Absolute Value	The Complex Plane	Polar Form	Roots of Unity
00	0000	000000	000

Theorem (Appendix A, Theorem $3 - n^{\text{th}}$ Roots of Unity)

For $n \ge 1$, the (complex) solutions to $z^n = 1$ are

$$z = e^{(2\pi k/n)i}$$
 for $k = 0, 1, 2, ..., n-1$.

For example, the sixth roots of unity are

Properties of Absolute Value	The Complex Plane	Polar Form
00	0000	000000

Theorem (Appendix A, Theorem $3 - n^{\text{th}}$ Roots of Unity)

For $n \ge 1$, the (complex) solutions to $z^n = 1$ are

$$z = e^{(2\pi k/n)i}$$
 for $k = 0, 1, 2, ..., n-1$.

For example, the sixth roots of unity are

$$z = e^{(2\pi k/6)i} = e^{(\pi k/3)i} \text{ for } k = 0, 1, 2, 3, 4, 5.$$

$$\frac{k \mid z}{0 \mid e^{0i} \quad = 1}$$

$$1 \mid e^{(\pi/3)i} \quad = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$2 \mid e^{(2\pi/3)i} \quad = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$3 \mid e^{\pi i} \quad = -1$$

$$4 \mid e^{(4\pi/3)i} \quad = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

$$5 \mid e^{(5\pi/3)i} \quad = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Properties of Absolute Value

Summary

The Complex Plane

Polar Form

Roots of Unity

Properties of Absolute Value

2 The Complex Plane

