Linear Methods (Math 211) Lecture 11 - §2.4

(with slides adapted from K. Seyffarth)

David Roe

October 2, 2013

Recall

- The Matrix Inversion Algorithm
- Properties of Inversion

Today

1 Properties of Inversion (continued)

2 Inverses of Matrix Transformations

Selementary Matrices

True or false? If $A^3 = 4I$, then A is invertible.

True or false? If $A^3 = 4I$, then A is invertible.

If $A^3 = 4I$, then

$$\frac{1}{4}A^3=I,$$

SO

$$(\frac{1}{4}A^2)A = I \text{ and } A(\frac{1}{4}A^2) = I.$$

True or false? If $A^3 = 4I$, then A is invertible.

If $A^3 = 4I$, then

$$\frac{1}{4}A^3=I,$$

SO

$$(\frac{1}{4}A^2)A = I$$
 and $A(\frac{1}{4}A^2) = I$.

Therefore A is invertible, and $A^{-1} = \frac{1}{4}A^2$. True

True or false? If A and B are invertible, then A + B is invertible.

True or false? If A and B are invertible, then A + B is invertible.

Take A = I and B = -I. Both are invertible but A + B = 0 is not.

False

Let A be an $n \times n$ matrix; **x** and **b** are n-vectors (i.e., $n \times 1$ matrices). The following conditions are equivalent:

A is invertible.

Theorem ($\S 2.4$ Theorem 5)

- A is invertible.
- 2 Ax = 0 has only the trivial solution, x = 0.

Theorem ($\S 2.4$ Theorem 5)

- A is invertible.
- **2** A**x** = 0 has only the trivial solution, **x** = 0.
- **3** A can be transformed to I_n by elementary row operations.

Theorem ($\S 2.4$ Theorem 5)

- A is invertible.
- **2** A**x** = 0 has only the trivial solution, **x** = 0.
- **3** A can be transformed to I_n by elementary row operations.
- **1** The system $A\mathbf{x} = \mathbf{b}$ has at least one solution \mathbf{x} for any choice of \mathbf{b} .

- A is invertible.
- **2** A**x** = 0 has only the trivial solution, **x** = 0.
- \bullet A can be transformed to I_n by elementary row operations.
- **1** The system $A\mathbf{x} = \mathbf{b}$ has at least one solution \mathbf{x} for any choice of \mathbf{b} .
- There exists an $n \times n$ matrix C with the property that $AC = I_n$.

Let A be an $n \times n$ matrix; **x** and **b** are n-vectors (i.e., $n \times 1$ matrices). The following conditions are equivalent:

- A is invertible.
- 2 $A\mathbf{x} = 0$ has only the trivial solution, $\mathbf{x} = 0$.
- \bullet A can be transformed to I_n by elementary row operations.
- **1** The system $A\mathbf{x} = \mathbf{b}$ has at least one solution \mathbf{x} for any choice of \mathbf{b} .
- There exists an $n \times n$ matrix C with the property that $AC = I_n$.

Corollary

If A and C are $n \times n$ matrices such that AC = I, then CA = I and $C = A^{-1}$, $A = C^{-1}$.

In the Corollary, it is essential that the matrices be square.

In the Corollary, it is essential that the matrices be square.

Example

Let

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}.$$

$$AC = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $CA = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

True or false? If A^2 is invertible, then A is invertible.

True or false? If A^2 is invertible, then A is invertible.

Suppose B is the inverse of A^2 . Then

$$A(AB) = A^2B = I$$

True or false? If A^2 is invertible, then A is invertible.

Suppose B is the inverse of A^2 . Then

$$A(AB) = A^2B = I$$

Therefore AB is the inverse of A. **True**

This is the end of the material to be included on the midterm

Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ is a matrix transformation induced by an **invertible** matrix A, i.e.,

$$T(\mathbf{x}) = A\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$.

Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ is a matrix transformation induced by an **invertible** matrix A, i.e.,

$$T(\mathbf{x}) = A\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$.

Define S to be the transformation induced by A^{-1} , i.e.,

$$S(\mathbf{x}) = A^{-1}\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$.

Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ is a matrix transformation induced by an **invertible** matrix A, i.e.,

$$T(\mathbf{x}) = A\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$.

Define S to be the transformation induced by A^{-1} , i.e.,

$$S(\mathbf{x}) = A^{-1}\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$.

Consider the composites of these matrix transformations: for each $\mathbf{x} \in \mathbb{R}^n$,

Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ is a matrix transformation induced by an **invertible** matrix A, i.e.,

$$T(\mathbf{x}) = A\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$.

Define S to be the transformation induced by A^{-1} , i.e.,

$$S(\mathbf{x}) = A^{-1}\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$.

Consider the composites of these matrix transformations: for each $\mathbf{x} \in \mathbb{R}^n$,

$$(S \circ T)(\mathbf{x}) = S(T(\mathbf{x})) = S(A\mathbf{x}) = A^{-1}(A\mathbf{x}) = (A^{-1}A)\mathbf{x} = I\mathbf{x} = \mathbf{x},$$

Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ is a matrix transformation induced by an **invertible** matrix A, i.e.,

$$T(\mathbf{x}) = A\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$.

Define S to be the transformation induced by A^{-1} , i.e.,

$$S(\mathbf{x}) = A^{-1}\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$.

Consider the composites of these matrix transformations: for each $\mathbf{x} \in \mathbb{R}^n$,

$$(S \circ T)(x) = S(T(x)) = S(Ax) = A^{-1}(Ax) = (A^{-1}A)x = Ix = x,$$
 and

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = T(A^{-1}\mathbf{x}) = A(A^{-1}\mathbf{x}) = (AA^{-1})\mathbf{x} = I\mathbf{x} = \mathbf{x}.$$

Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ is a matrix transformation induced by an **invertible** matrix A, i.e.,

$$T(\mathbf{x}) = A\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$.

Define S to be the transformation induced by A^{-1} , i.e.,

$$S(\mathbf{x}) = A^{-1}\mathbf{x}$$
 for each $\mathbf{x} \in \mathbb{R}^n$.

Consider the composites of these matrix transformations: for each $\mathbf{x} \in \mathbb{R}^n$,

$$(S \circ T)(\mathbf{x}) = S(T(\mathbf{x})) = S(A\mathbf{x}) = A^{-1}(A\mathbf{x}) = (A^{-1}A)\mathbf{x} = I\mathbf{x} = \mathbf{x},$$

and

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = T(A^{-1}\mathbf{x}) = A(A^{-1}\mathbf{x}) = (AA^{-1})\mathbf{x} = I\mathbf{x} = \mathbf{x}.$$

Geometrically, S reverses the action of T, and T reverses the action of S, and S is called an inverse of T.

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a matrix transformation induced by matrix A. Then A is invertible if and only if T has an inverse. In the case where T has an inverse, the inverse is unique and is denoted T^{-1} . Furthermore, $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is induced by the matrix A^{-1} .

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a matrix transformation induced by matrix A. Then A is invertible if and only if T has an inverse. In the case where T has an inverse, the inverse is unique and is denoted T^{-1} . Furthermore, $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is induced by the matrix A^{-1} .

Fundamental Identities relating T and T^{-1} :

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a matrix transformation induced by matrix A. Then A is invertible if and only if T has an inverse. In the case where T has an inverse, the inverse is unique and is denoted T^{-1} . Furthermore, $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is induced by the matrix A^{-1} .

Fundamental Identities relating T and T^{-1} :

 $T^{-1}(T(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n.$

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a matrix transformation induced by matrix A. Then A is invertible if and only if T has an inverse. In the case where T has an inverse, the inverse is unique and is denoted T^{-1} . Furthermore, $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is induced by the matrix A^{-1} .

Fundamental Identities relating T and T^{-1} :

- $T(T^{-1}(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n.$

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a matrix transformation induced by matrix A. Then A is invertible if and only if T has an inverse. In the case where T has an inverse, the inverse is unique and is denoted T^{-1} . Furthermore, $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is induced by the matrix A^{-1} .

Fundamental Identities relating T and T^{-1} :

- $T(T^{-1}(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n.$

or

- $T^{-1} \circ T = 1_{\mathbb{R}^n}$
- ② $T \circ T^{-1} = 1_{\mathbb{R}^n}$

Let $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ denote counterclockwise rotation of the plane about the origin through an angle of θ . R_{θ} is induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

To find the inverse of A, we use the inverse of R_{θ} .

Let $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ denote counterclockwise rotation of the plane about the origin through an angle of θ . R_{θ} is induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

To find the inverse of A, we use the inverse of R_{θ} .

Question: What is the inverse of R_{θ} ?

Let $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ denote counterclockwise rotation of the plane about the origin through an angle of θ . R_{θ} is induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

To find the inverse of A, we use the inverse of R_{θ} .

Question: What is the inverse of R_{θ} ? $R_{-\theta}$.

Let $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ denote counterclockwise rotation of the plane about the origin through an angle of θ . R_{θ} is induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

To find the inverse of A, we use the inverse of R_{θ} .

Question: What is the inverse of R_{θ} ? $R_{-\theta}$.

The matrix for $R_{-\theta}$ is $\begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$.

Let $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ denote counterclockwise rotation of the plane about the origin through an angle of θ . R_{θ} is induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

To find the inverse of A, we use the inverse of R_{θ} .

Question: What is the inverse of R_{θ} ? $R_{-\theta}$.

The matrix for $R_{-\theta}$ is $\begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$.

Therefore

$$A^{-1} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}.$$

Let $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ denote counterclockwise rotation of the plane about the origin through an angle of θ . R_{θ} is induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

To find the inverse of A, we use the inverse of R_{θ} .

Question: What is the inverse of R_{θ} ? $R_{-\theta}$.

The matrix for $R_{-\theta}$ is $\begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$.

Therefore

$$A^{-1} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}.$$

We can verify that this is correct by computing AA^{-1} .

Definition

An elementary matrix is a matrix obtained from an identity matrix by performing **a single** elementary row operation.

Example

$$E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

are examples of elementary matrices of types I, II and III,

respectively.

Definition

An elementary matrix is a matrix obtained from an identity matrix by performing **a single** elementary row operation.

Example

$$E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

are examples of elementary matrices of types I, II and III,

respectively. Let
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix}$$
; compute EA , FA , and GA .

Example (continued)

$$EA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 3 & 3 \\ 2 & 2 \end{bmatrix};$$

Example (continued)

$$EA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 3 & 3 \\ 2 & 2 \end{bmatrix};$$

$$\mathit{FA} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ -6 & -6 \\ 4 & 4 \end{bmatrix};$$

Example (continued)

$$EA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 3 & 3 \\ 2 & 2 \end{bmatrix};$$

$$\mathit{FA} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ -6 & -6 \\ 4 & 4 \end{bmatrix};$$

$$GA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 0 & 0 \\ 4 & 4 \end{bmatrix}.$$

Lemma (§2.5 Lemma 1)

If A is an $m \times n$ matrix, and B is obtained from A by performing a single elementary row operation, then B = EA where E is the elementary matrix obtained by performing the same elementary operation on I_m .

Summary

1 Properties of Inversion (continued)

2 Inverses of Matrix Transformations

Selementary Matrices