Linear Methods (Math 211) Lecture 16 - Appendix A

(with slides adapted from K. Seyffarth)

David Roe

October 18, 2013

Recall

- More Matrix Transformations
- Vector Operations
- 3 Reflections and Rotations

Today

Basic Definitions

2 Arithmetic with Complex Numbers

Conjugates and Division

Why complex numbers?

- Counting numbers: 1, 2, 3, 4, 5, . . .
- Integers: 0, 1, 2, 3, 4... but also -1, -2, -3...
- To solve 3x + 2 = 0, integers aren't enough, so we have rational numbers (fractions), e.g.,

If
$$3x + 2 = 0$$
, then $x = -\frac{2}{3}$.

• But there are no rational numbers x with the property that $x^2 - 2 = 0$, so we allow irrational numbers, e.g.,

If
$$x^2 - 2 = 0$$
, then $x = \pm \sqrt{2}$.

 The set of real numbers, R, consists of numbers that can be written as decimals, both rational and irrational. However, we still can't solve

$$x^2 = -1$$

since the square of a positive number and of a negative number are both positive.

Complex Numbers

- The imaginary unit, denoted i, is defined to be a number with the property that $i^2 = -1$.
- A pure imaginary number has the form bi where $b \in \mathbb{R}$, $b \neq 0$, and i is the imaginary unit.
- A complex number is any number z of the form

$$z = a + bi$$

where $a, b \in \mathbb{R}$ and i is the imaginary unit.

- a is called the real part of z.
- b is called the imaginary part of z.
- If b = 0, then z is a real number.

Operations with Complex Numbers

Let z = a + bi and w = c + di be complex numbers.

- Equality. z = w if and a = c and b = d.
- Addition and Subtraction.

$$z + w = (a + bi) + (c + di) = (a + c) + (b + d)i$$

 $z - w = (a + bi) - (c + di) = (a - c) + (b - d)i$

Multiplication.

$$zw = (a + bi)(c + di) = (ac - bd) + (ad + bc)i$$

$$(-3+6i)+(5-i) = (4-7i)-(6-2i) = (2-3i)(-3+4i) =$$

$$(-3+6i)+(5-i) = 2+5i.$$

$$(4-7i)-(6-2i) = -2-5i.$$

$$(2-3i)(-3+4i) = -6+8i+9i+12=6+17i.$$

Find all complex number z = (a + bi) so that $z^2 = -3 + 4i$.

Find all complex number z = (a + bi) so that $z^2 = -3 + 4i$.

$$z^2 = (a + bi)^2 = (a^2 - b^2) + 2abi = -3 + 4i,$$

SO

$$a^2 - b^2 = -3$$
 and $2ab = 4$.

Since 2ab = 4, $a = \frac{2}{b}$. Substitute this into the first equation:

$$a^{2} - b^{2} = -3$$

$$(2/b)^{2} - b^{2} = -3$$

$$\frac{4}{b^{2}} - b^{2} = -3$$

$$4 - b^{4} = -3b^{2}$$

$$b^{4} - 3b^{2} - 4 = 0$$

Example (continued)

Now, $b^4 - 3b^2 - 4 = 0$ can be factored into

$$(b^2 - 4)(b^2 + 1) = 0$$
$$(b - 2)(b + 2)(b^2 + 1) = 0.$$

Since $b \in \mathbb{R}$, and $b^2 + 1$ has no real roots, b = 2 or b = -2.

Since $a = \frac{2}{b}$, it follows that

- when b = 2, a = 1, and z = a + bi = 1 + 2i;
- when b = -2, a = -1, and z = a + bi = -1 2i.

Therefore, if $z^2 = -3 + 4i$, then z = 1 + 2i or z = -1 - 2i.

Definitions

Let z = a + bi and w = c + di be complex numbers.

The conjugate of z is the complex number

$$\overline{z} = a - bi$$
.

ullet Division. Suppose that c, d are not both zero. Then

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \times \frac{c-di}{c-di}$$
$$= \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$$
$$= \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i.$$

$$\frac{\frac{1}{i}}{\frac{1}{3+4i}} =$$

$$\frac{1-2i}{-2+5i} =$$

$$\frac{1}{i} = \frac{1}{i} \times \frac{-i}{-i} = \frac{-i}{-i^2} = -i.$$

$$\frac{1}{3+4i} = \frac{1}{3+4i} \times \frac{3-4i}{3-4i}$$

$$= \frac{3-4i}{3^3+4^2}$$

$$= \frac{3}{25} - \frac{4}{25}i.$$

$$\frac{1-2i}{-2+5i} = \frac{1-2i}{-2+5i} \times \frac{-2-5i}{-2-5i}$$

$$= \frac{(-2-10)+(4-5)i}{2^2+5^2}$$

$$= -\frac{12}{29} - \frac{1}{29}i.$$

Definition

The absolute value or modulus of a complex number z = a + bi is

$$|z|=\sqrt{a^2+b^2}.$$

Note that this is consistent with the definition of the absolute value of a real number.

$$|-3+4i| =$$
$$|3-2i| =$$
$$|i| =$$

Definition

The absolute value or modulus of a complex number z = a + bi is

$$|z|=\sqrt{a^2+b^2}.$$

Note that this is consistent with the definition of the absolute value of a real number.

$$|-3 + 4i| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5.$$

 $|3 - 2i| = \sqrt{3^2 + 2^2} = \sqrt{13}.$
 $|i| = \sqrt{1^2} = 1.$

Properties of the Conjugate and Absolute Value (p. 507)

Let z and w be complex numbers.

- C1. $\overline{z \pm w} = \overline{z} \pm \overline{w}$.
- C2. $\overline{(zw)} = \overline{z} \overline{w}$.
- C3. $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$.
- C4. $\overline{(\overline{z})} = z$.
- C5. z is real if and only if $\overline{z} = z$.
- C6. $z \cdot \overline{z} = |z|^2$.
- C7. $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.
- C8. $|z| \ge 0$ for all complex numbers z
- C9. |z| = 0 if and only if z = 0.
- C10. |zw| = |z| |w|.
- C11. $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$.
- C12. Triangle Inequality $|z + w| \le |z| + |w|$.

Summary

Basic Definitions

Arithmetic with Complex Numbers

Conjugates and Division