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Markov Chains Steady States

§2.9 Markov Chains

Markov Chains are used to model systems (or processes) that
evolve through a series of stages. At each stage, the system is in
one of a finite number of states.

Example (Weather Model)

Three states: sunny (S), cloudy (C), rainy (R).
Stages: days.

The state that the system occupies at any stage is determined by a
set of probabilities.

Important fact: probabilities are always real numbers between zero
and one, inclusive.
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Example (Weather Model – continued)

If it is sunny one day, then there is a 40% chance it will be
sunny the next day, and a 40% chance that it will be cloudy
the next day (and a 20% chance it will be rainy the next day).

The values 40%, 40% and 20% are transition probabilities, and are
assumed to be known.

If it is cloudy one day, then there is a 40% chance it will be
rainy the next day, and a 25% chance that it will be sunny the
next day.

If it is rainy one day, then there is a 30% chance it will be
rainy the next day, and a 50% chance that it will be cloudy
the next day.
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Example (Weather Model – continued)

We put the transition probabilities into a transition matrix,

P =

0.4 0.25 0.2
0.4 0.35 0.5
0.2 0.4 0.3


Note. Transition matrices are stochastic, meaning that the sum of
the entries in each column is equal to one.

Suppose that it is rainy on Thursday. What is the probability that
it will be sunny on Sunday?

The initial state vector, S0, corresponds to the state of the weather
on Thursday, so

S0 =

0
0
1
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Example (Weather Model – continued)

What is the state vector for Friday?

S1 =

0.2
0.5
0.3

 =

0.4 0.25 0.2
0.4 0.35 0.5
0.2 0.4 0.3

0
0
1

 = PS0.

To find the state vector for Saturday:

S2 = PS1 =

0.4 0.25 0.2
0.4 0.35 0.5
0.2 0.4 0.3

0.2
0.5
0.3

 =

0.265
0.405
0.33


Finally, the state vector for Sunday is

S3 = PS2 =

0.4 0.25 0.2
0.4 0.35 0.5
0.2 0.4 0.3

0.265
0.405
0.33

 =

0.27325
0.41275
0.314


The probability that it will be sunny on Sunday is 27.325%.
Important fact: the sum of the entries of a state vector is always
one.



Markov Chains Steady States

Theorem (§2.9 Theorem 1)

If P is the transition matrix for an n-state Markov chain, then

Sm+1 = PSm for m = 0, 1, 2, . . .

Example (§2.9 Example 1)

A customer always eats lunch either at restaurant A or
restaurant B.

The customer never eats at A two days in a row.

If the customer eats at B one day, then the next day she is
three times as likely to eat at B as at A.

What is the probability transition matrix?

P =

[
0 1

4

1 3
4

]
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Example (continued)

Initially, the customer is equally likely to eat at either restaurant, so

S0 =

[1
2
1
2

]

S1 =

[
0.125
0.875

]
,S2 =

[
0.21875
0.78125

]
,S3 =

[
0.1953125
0.8046875

]
,

S4 =

[
0.20117
0.79883

]
,S5 =

[
0.19971
0.80029

]
,

S6 =

[
0.20007
0.79993

]
, S7 =

[
0.19998
0.80002

]
,

are calculated, and these appear to converge to[
0.2
0.8

]
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Example (§2.9 Example 3)

A wolf pack always hunts in one of three regions, R1, R2, and R3.

If it hunts in some region one day, it is as likely as not to hunt
there again the next day.

If it hunts in R1, it never hunts in R2 the next day.

If it hunts in R2 or R3, it is equally likely to hunt in each of
the other two regions the next day.

If the pack hunts in R1 on Monday, find the probability that it will
hunt in R3 on Friday.

P =

1
2

1
4

1
4

0 1
2

1
4

1
2

1
4

1
2

 and S0 =

1
0
0


We want to find S4, and, in particular, the last entry in S4.
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Example (continued)

S1 =

1
2
0
1
2

 ,S2 = PS1 =

1
2

1
4

1
4

0 1
2

1
4

1
2

1
4

1
2


1

2

0
1
2

 =

3
8
1
8
1
2

 ,

S3 = PS2 =

1
2

1
4

1
4

0 1
2

1
4

1
2

1
4

1
2


3

8
1
8
1
2

 =

11
32
3
16
15
32

 ,

S4 = PS3 =

1
2

1
4

1
4

0 1
2

1
4

1
2

1
4

1
2


11

32
3
16
15
32

 =


29
64


Therefore, the probability of the pack hunting in R3 on Friday is 29

64 .
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Steady State Vectors

Sometimes, state vectors converge to a particular vector, called the
steady state vector.

Problem

How do we know if a Markov chain has a steady state vector? If
the Markov chain has a steady state vector, how do we find it?

One condition ensuring that a steady state vector exists is that the
transition matrix P be regular, meaning that for some integer
k > 0, all entries of Pk are positive (i.e., greater than zero).

In §2.9 Example 1, P =

[
0 1

4

1 3
4

]
is regular because

P2 =

[
0 1

4

1 3
4

] [
0 1

4

1 3
4

]
=

[1
4

3
16

3
4

13
16

]
has all entries greater than zero.
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Theorem (§2.9 Theorem 2 – paraphrased)

If P is the transition matrix of a Markov chain and P is regular,
then the steady state vector can be found by solving the system

S = PS

for S , and then ensuring that the entries of S sum to one.

Notice that if S = PS , then

S − PS = 0

IS − PS = 0

(I − P)S = 0

This last line represents a system of linear equations that is
homogeneous.
The structure of P ensures that I − P is not invertible, and so
the system has infinitely many solutions.
Choose the value of the parameter so that the entries of S
sum to one.
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Example

From §2.9 Example 1,

P =

[
0 1

4

1 3
4

]
,

and we’ve already verified that P is regular.

Now solve the system (I − P)S = 0.

I − P =

[
1 0

0 1

]
−
[

0 1
4

1 3
4

]
=

[
1 −1

4

−1 1
4

]
Solving (I − P)S = 0:[

1 −1
4 0

−1 1
4 0

]
→
[

1 −1
4 0

0 0 0

]
The general solution in parametric form is

s1 =
1

4
t, s2 = t for t ∈ R.
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Example (continued)

Since s1 + s2 = 1,

1

4
t + t = 1

5

4
t = 1

t =
4

5

Therefore, the steady state vector is

S =

[1
5
4
5

]
=

[
0.2

0.8

]
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Example (§2.9 Example 3)

Is there a steady state vector? If so, find it.

P =

1
2

1
4

1
4

0 1
2

1
4

1
2

1
4

1
2


so

P2 =

1
2

1
4

1
4

0 1
2

1
4

1
2

1
4

1
2


1

2
1
4

1
4

0 1
2

1
4

1
2

1
4

1
2

 =

5
8

5
16

5
16

1
8

5
16

1
4

1
2

3
8

7
16



Therefore P is regular, and there is definitely a steady state by
Theorem 2.
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Example (continued)

Now solve the system (I − P)S = 0.

 1
2 −1

4 −1
4 0

0 1
2 −1

4 0

−1
2 −1

4
1
2 0

→
1

2 −1
4 −1

4 0

0 1
2 −1

4 0

0 −1
2

1
4 0

→
1 −1

2 −1
2 0

0 1
2 −1

4 0

0 0 0 0



→

1 0 −3
4 0

0 1
2 −1

4 0

0 0 0 0

→
1 0 −3

4 0

0 1 −1
2 0

0 0 0 0


The general solution in parametric form is

s3 = t, s2 =
1

2
t, s1 =

3

4
t, where t ∈ R.
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Example (continued)

Since s1 + s2 + s3 = 1,

t +
1

2
t +

3

4
t = 1,

implying that t = 4
9 . Therefore the steady state vector is

S =

3
9
2
9
4
9

 .
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