Recall

1. Products of Elementary Matrices
2. Linear Transformations
3. ... and Matrix Transformations
Today

1. More Matrix Transformations
2. Vector Operations
3. Reflections and Rotations
Example

Let \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) be a transformation defined by

\[
T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ y \\ -x + 2y \end{bmatrix}.
\]

Show that \(T \) is a linear transformation.
Example

Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be a transformation defined by

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ y \\ -x + 2y \end{bmatrix}.$$

Show that T is a linear transformation.

Solution. If T were a linear transformation, then T would be induced by the matrix

$$A = \begin{bmatrix} T(e_1) & T(e_2) \end{bmatrix} = \begin{bmatrix} T \begin{bmatrix} 1 \\ 0 \end{bmatrix} & T \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ -1 & 2 \end{bmatrix}.$$
Example (continued)

Since

\[
A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ y \\ -x + 2y \end{bmatrix} = T \begin{bmatrix} x \\ y \end{bmatrix},
\]

\(T\) is a matrix transformation, and therefore a linear transformation.
Example

Let \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a transformation defined by

\[
T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} xy \\ x + y \end{bmatrix}.
\]

Is \(T \) is a linear transformation? Explain.
Example

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a transformation defined by

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} xy \\ x + y \end{bmatrix}.$$

Is T is a linear transformation? Explain.

Solution. If T were a linear transformation, then T would be induced by the matrix

$$A = \begin{bmatrix} T(e_1) & T(e_2) \end{bmatrix} = \begin{bmatrix} T \begin{bmatrix} 1 \\ 0 \end{bmatrix} & T \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}.$$
Example

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a transformation defined by

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} xy \\ x + y \end{bmatrix}.$$

Is T is a linear transformation? Explain.

Solution. If T were a linear transformation, then T would be induced by the matrix

$$A = \begin{bmatrix} T(e_1) & T(e_2) \end{bmatrix} = \begin{bmatrix} T \begin{bmatrix} 1 \\ 0 \end{bmatrix} & T \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}.$$

Now

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ x + y \end{bmatrix}.$$
Example (continued)

In particular,

\[
A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix},
\]

while

\[
T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.
\]

Since \(A \begin{bmatrix} 1 \\ 1 \end{bmatrix} \neq T \begin{bmatrix} 1 \\ 1 \end{bmatrix}\), \(T\) is **not** a linear transformation.

There is an alternate way to show that \(T\) is not a linear transformation.
Example (continued)

Notice that $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and

$$T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad T \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad T \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

From this we see that

$$T \begin{bmatrix} 1 \\ 1 \end{bmatrix} \neq T \begin{bmatrix} 1 \\ 0 \end{bmatrix} + T \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

i.e., T does not preserve addition, and so T is not a linear transformation.
Geometric Interpretation of Vector Operations

Definition (Vector scalar multiplication)

Let \(\mathbf{x} \in \mathbb{R}^2 \) and let \(k \in \mathbb{R} \). Then \(k\mathbf{x} \) is the vector in \(\mathbb{R}^2 \) that is \(|k| \) times the length of \(\mathbf{x} \); \(k\mathbf{x} \) points the same directions as \(\mathbf{x} \) if \(k > 0 \), and opposite to \(\mathbf{x} \) if \(k < 0 \).

Definition (Vector addition)

Let \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^2 \), and consider the parallelogram defined by 0, \(\mathbf{x} \) and \(\mathbf{y} \). The vector \(\mathbf{x} + \mathbf{y} \) corresponds to the fourth vertex of this parallelogram.
Reflection in \mathbb{R}^2

Let $Q_m : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ denote reflection across the line $y = mx$, and let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ and $k \in \mathbb{R}$. Q_m is a linear transformation and hence a matrix transformation.

Example

Find the matrix inducing Q_m.
Reflection in \mathbb{R}^2

Let $Q_m : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ denote reflection across the line $y = mx$, and let $x, y \in \mathbb{R}^2$ and $k \in \mathbb{R}$. Q_m is a linear transformation and hence a matrix transformation.

Example

Find the matrix inducing Q_m.

By Theorem 2, we can find the matrix that induces Q_m by finding $Q_m(e_1)$ and $Q_m(e_2)$.
Example (continued)

However, an easier way to obtain the matrix for Q_m is to use the following observation:

$$Q_m = R_\theta \circ Q_0 \circ R_{-\theta},$$

where θ is the angle between $y = mx$ and the positive x axis.

Using the standard trigonometric identities:

$$\cos \theta = \frac{1}{\sqrt{1 + m^2}} \text{ and } \sin \theta = \frac{m}{\sqrt{1 + m^2}},$$

the matrix for Q_m can be found by computing the product

$$\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
\cos(-\theta) & -\sin(-\theta) \\
\sin(-\theta) & \cos(-\theta)
\end{bmatrix}.$$
The transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$, denoting reflection across the line $y = mx$, is a linear transformation and is induced by the matrix

$$
\frac{1}{1 + m^2} \begin{bmatrix}
1 - m^2 & 2m \\
2m & m^2 - 1
\end{bmatrix}.
$$

For reflection across the x-axis, $m = 0$, and the theorem yields the expected matrix

$$
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}.
$$

The y-axis has undefined slope, so the theorem does not apply. We use Q_Y to denote reflection across the y-axis; Q_Y is induced by the matrix

$$
\begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}.
Example

Find the rotation or reflection that equals reflection across the x-axis followed by rotation through an angle of $\frac{\pi}{2}$.

Q_0 is induced by $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, and $R_{\frac{\pi}{2}}$ is induced by $B = \begin{bmatrix} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

$R_{\frac{\pi}{2}} \circ Q_0$ is induced by $BA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Example

Find the rotation or reflection that equals reflection across the x-axis followed by rotation through an angle of $\frac{\pi}{2}$.

We must find the matrix for the transformation $R_{\frac{\pi}{2}} \circ Q_0$.

Q_0 is induced by $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, and $R_{\frac{\pi}{2}}$ is induced by

$$B = \begin{bmatrix} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$R_{\frac{\pi}{2}} \circ Q_0$ is induced by

$$BA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$
Example (continued)

We’ve seen this matrix before: \(BA = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) is a \textit{reflection} matrix.

In fact, \(R_{\frac{\pi}{2}} \circ Q_0 = Q_1 \),

reflection across the line \(y = x \).
In general,

- The composite of two reflections is a rotation.
- The composite of two rotations is a rotation.
- The composite of a reflection and a rotation is a reflection.

Both reflections and rotations are **orthogonal**: $A^{-1} = A^T$. The rotations are the 2×2 orthogonal matrices with determinant 1, and the reflections are those with determinant -1.
Example

Find the rotation or reflection that equals reflection across the line \(y = -x \) followed by reflection across the \(y \)-axis.
Example

Find the rotation or reflection that equals reflection across the line \(y = -x \) followed by reflection across the \(y \)-axis.

We must find the matrix for the transformation \(Q_Y \circ Q_{-1} \).

\(Q_{-1} \) is induced by

\[
A = \frac{1}{2} \begin{bmatrix} 0 & -2 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix},
\]

and \(Q_Y \) is induced by

\[
B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}.
\]

Therefore, \(Q_Y \circ Q_{-1} \) is induced by \(BA \).
Example (continued)

\[BA = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}. \]

We know \(BA \) is a rotation, and it must be rotation through an angle \(\theta \) such that

\[\cos \theta = 0 \quad \text{and} \quad \sin \theta = -1. \]

Therefore, \(Q_Y \circ Q_{-1} = R_{-\frac{\pi}{2}} = R_{\frac{3\pi}{2}}. \)
Summary

1. More Matrix Transformations
2. Vector Operations
3. Reflections and Rotations