Linear Methods (Math 211) Lecture 14 - §2.6

(with slides adapted from K. Seyffarth)

David Roe

October 11, 2013

Recall
(1) Products of Elementary Matrices
(2) Linear Transformations
(3)... and Matrix Transformations

Today

(1) More Matrix Transformations
(2) Vector Operations

3 Reflections and Rotations

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a transformation defined by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 x \\
y \\
-x+2 y
\end{array}\right] .
$$

Show that T is a linear transformation.

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a transformation defined by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 x \\
y \\
-x+2 y
\end{array}\right]
$$

Show that T is a linear transformation.
Solution. If T were a linear transformation, then T would be induced by the matrix

$$
A=\left[T\left(\mathbf{e}_{1}\right) \quad T\left(\mathbf{e}_{2}\right)\right]=\left[T\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad T\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]=\left[\begin{array}{rr}
2 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right] .
$$

Example (continued)
Since

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rr}
2 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 x \\
y \\
-x+2 y
\end{array}\right]=T\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

T is a matrix transformation, and therefore a linear transformation.

Example
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a transformation defined by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x y \\
x+y
\end{array}\right] .
$$

Is T is a linear transformation? Explain.

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a transformation defined by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x y \\
x+y
\end{array}\right] .
$$

Is T is a linear transformation? Explain.
Solution. If T were a linear transformation, then T would be induced by the matrix

$$
A=\left[\begin{array}{ll}
T\left(\mathbf{e}_{1}\right) & \left.T\left(\mathbf{e}_{2}\right)\right]=\left[T\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad T\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]
\end{array}\right.
$$

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a transformation defined by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x y \\
x+y
\end{array}\right] .
$$

Is T is a linear transformation? Explain.
Solution. If T were a linear transformation, then T would be induced by the matrix

$$
A=\left[\begin{array}{ll}
T\left(\mathbf{e}_{1}\right) & \left.T\left(\mathbf{e}_{2}\right)\right]=\left[T\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad T\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]
\end{array}\right.
$$

Now

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
0 \\
x+y
\end{array}\right] .
$$

Example (continued)

In particular,

$$
A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

while

$$
T\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Since $A\left[\begin{array}{l}1 \\ 1\end{array}\right] \neq T\left[\begin{array}{l}1 \\ 1\end{array}\right], T$ is not a linear transformation.
There is an alternate way to show that T is not a linear transformation.

Example (continued)

Notice that $\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and

$$
T\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right], T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right], T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

From this we see that

$$
T\left[\begin{array}{l}
1 \\
1
\end{array}\right] \neq T\left[\begin{array}{l}
1 \\
0
\end{array}\right]+T\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

i.e., T does not preserve addition, and so T is not a linear transformation.

Geometric Interpretation of Vector Operations

Definition (Vector scalar multiplication)

Let $\mathbf{x} \in \mathbb{R}^{2}$ and let $k \in \mathbb{R}$. Then $k \mathbf{x}$ is the vector in \mathbb{R}^{2} that is $|k|$ times the length of $\mathbf{x} ; k \mathbf{x}$ points the same directions as \mathbf{x} if $k>0$, and opposite to \mathbf{x} if $k<0$.

Definition (Vector addition)

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$, and consider the parallelogram defined by 0 , \mathbf{x} and \mathbf{y}. The vector $\mathbf{x}+\mathbf{y}$ corresponds to the fourth vertex of this parallelogram.

Reflection in \mathbb{R}^{2}

Let $Q_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection across the line $y=m x$, and let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ and $k \in \mathbb{R} . Q_{m}$ is a linear transformation and hence a matrix transformation.

Example

Find the matrix inducing Q_{m}.

Reflection in \mathbb{R}^{2}

Let $Q_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection across the line $y=m x$, and let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ and $k \in \mathbb{R} . Q_{m}$ is a linear transformation and hence a matrix transformation.

Example

Find the matrix inducing Q_{m}.
By Theorem 2, we can find the matrix that induces Q_{m} by finding $Q_{m}\left(\mathbf{e}_{1}\right)$ and $Q_{m}\left(\mathbf{e}_{2}\right)$.

Example (continued)

However, an easier way to obtain the matrix for Q_{m} is to use the following observation:

$$
Q_{m}=R_{\theta} \circ Q_{0} \circ R_{-\theta},
$$

where θ is the angle between $y=m x$ and the positive x axis.
Using the standard trigonometric identities:

$$
\cos \theta=\frac{1}{\sqrt{1+m^{2}}} \text { and } \sin \theta=\frac{m}{\sqrt{1+m^{2}}}
$$

the matrix for Q_{m} can be found by computing the product

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right]
$$

Theorem (§2.6 Theorem 5)

The transformation $Q_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, denoting reflection across the line $y=m x$, is a linear transformation and is induced by the matrix

$$
\frac{1}{1+m^{2}}\left[\begin{array}{rr}
1-m^{2} & 2 m \\
2 m & m^{2}-1
\end{array}\right] .
$$

For reflection across the x-axis, $m=0$, and the theorem yields the expected matrix

$$
\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

The y-axis has undefined slope, so the theorem does not apply. We use Q_{Y} to denote reflection across the y-axis; Q_{Y} is induced by the matrix

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

Example

Find the rotation or reflection that equals reflection across the x-axis followed by rotation through an angle of $\frac{\pi}{2}$.

Example

Find the rotation or reflection that equals reflection across the x-axis followed by rotation through an angle of $\frac{\pi}{2}$.

We must find the matrix for the transformation $R_{\frac{\pi}{2}} \circ Q_{0}$.
Q_{0} is induced by $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$, and $R_{\frac{\pi}{2}}$ is induced by

$$
B=\left[\begin{array}{rr}
\cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\
\sin \frac{\pi}{2} & \cos \frac{\pi}{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

$R_{\frac{\pi}{2}} \circ Q_{0}$ is induced by

$$
B A=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Example (continued)

We've seen this matrix before: $B A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is a reflection matrix. In fact,

$$
R_{\frac{\pi}{2}} \circ Q_{0}=Q_{1},
$$

reflection across the line $y=x$.

In general,

- The composite of two reflections is a rotation.
- The composite of two rotations is a rotation.
- The composite of a reflection and a rotation is a reflection.

Both reflections and rotations are orthogonal: $A^{-1}=A^{T}$. The rotations are the 2×2 orthogonal matrices with determinant 1 , and the reflections are those with determinant -1 .

Example

Find the rotation or reflection that equals reflection across the line $y=-x$ followed by reflection across the y-axis.

Example

Find the rotation or reflection that equals reflection across the line $y=-x$ followed by reflection across the y-axis.

We must find the matrix for the transformation $Q_{Y} \circ Q_{-1}$.
Q_{-1} is induced by

$$
A=\frac{1}{2}\left[\begin{array}{rr}
0 & -2 \\
-2 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right],
$$

and Q_{Y} is induced by

$$
B=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

Therefore, $Q_{Y} \circ Q_{-1}$ is induced by $B A$.

Example (continued)

$$
B A=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

We know $B A$ is a rotation, and it must be rotation through an angle θ such that

$$
\cos \theta=0 \text { and } \sin \theta=-1
$$

Therefore, $Q_{Y} \circ Q_{-1}=R_{-\frac{\pi}{2}}=R_{\frac{3 \pi}{2}}$.

Summary

(1) More Matrix Transformations
(2) Vector Operations
(3) Reflections and Rotations

