
More Matrix Transformations Vector Operations Reflections and Rotations

Linear Methods (Math 211)
Lecture 14 - §2.6

(with slides adapted from K. Seyffarth)

David Roe

October 11, 2013



More Matrix Transformations Vector Operations Reflections and Rotations

Recall

1 Products of Elementary Matrices

2 Linear Transformations

3 ... and Matrix Transformations
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1 More Matrix Transformations

2 Vector Operations
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Example

Let T : R2 → R3 be a transformation defined by

T

[
x
y

]
=

 2x
y

−x + 2y

 .
Show that T is a linear transformation.

Solution. If T were a linear transformation, then T would be
induced by the matrix

A =
[
T (e1) T (e2)

]
=

[
T

[
1
0

]
T

[
0
1

]]
=

 2 0
0 1
−1 2

 .
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Example (continued)

Since

A

[
x
y

]
=

 2 0
0 1
−1 2

[x
y

]
=

 2x
y

−x + 2y

 = T

[
x
y

]
,

T is a matrix transformation, and therefore a linear transformation.
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Example (continued)

In particular,

A

[
1
1

]
=

[
0 0
1 1

] [
1
1

]
=

[
0
2

]
,

while

T

[
1
1

]
=

[
1
2

]
.

Since A

[
1
1

]
6= T

[
1
1

]
, T is not a linear transformation.

There is an alternate way to show that T is not a linear
transformation.
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Example (continued)

Notice that

[
1
1

]
=

[
1
0

]
+

[
0
1

]
, and

T

[
1
1

]
=

[
1
2

]
,T

[
1
0

]
=

[
0
1

]
,T

[
0
1

]
=

[
0
1

]
.

From this we see that

T

[
1
1

]
6= T

[
1
0

]
+ T

[
0
1

]
,

i.e., T does not preserve addition, and so T is not a linear
transformation.
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Geometric Interpretation of Vector Operations

Definition (Vector scalar multiplication)

Let x ∈ R2 and let k ∈ R. Then kx is the vector in R2 that is |k |
times the length of x; kx points the same directions as x if k > 0,
and opposite to x if k < 0.

Definition (Vector addition)

Let x, y ∈ R2, and consider the parallelogram defined by 0, x and
y. The vector x + y corresponds to the fourth vertex of this
parallelogram.
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Reflection in R2

Let Qm : R2 → R2 denote reflection across the line y = mx , and
let x, y ∈ R2 and k ∈ R. Qm is a linear transformation and hence a
matrix transformation.

Example

Find the matrix inducing Qm.

By Theorem 2, we can find the matrix that induces Qm by finding
Qm(e1) and Qm(e2).
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Example (continued)

However, an easier way to obtain the matrix for Qm is to use the
following observation:

Qm = Rθ ◦ Q0 ◦ R−θ,

where θ is the angle between y = mx and the positive x axis.

Using the standard trigonometric identities:

cos θ =
1√

1 + m2
and sin θ =

m√
1 + m2

,

the matrix for Qm can be found by computing the product[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

] [
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
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Theorem (§2.6 Theorem 5)

The transformation Qm : R2 → R2, denoting reflection across the
line y = mx , is a linear transformation and is induced by the matrix

1

1 + m2

[
1−m2 2m

2m m2 − 1

]
.

For reflection across the x-axis, m = 0, and the theorem yields the
expected matrix [

1 0
0 −1

]
.

The y -axis has undefined slope, so the theorem does not apply.
We use QY to denote reflection across the y -axis; QY is induced
by the matrix [

−1 0
0 1

]
.
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Example

Find the rotation or reflection that equals reflection across the
x-axis followed by rotation through an angle of π

2 .

We must find the matrix for the transformation Rπ
2
◦ Q0.

Q0 is induced by A =

[
1 0
0 −1

]
, and Rπ

2
is induced by

B =

[
cos π

2 − sin π
2

sin π
2 cos π

2

]
=

[
0 −1
1 0

]
Rπ

2
◦ Q0 is induced by

BA =

[
0 −1
1 0

] [
1 0
0 −1

]
=

[
0 1
1 0

]
.
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Example (continued)

We’ve seen this matrix before: BA =

[
0 1
1 0

]
is a reflection matrix.

In fact,
Rπ

2
◦ Q0 = Q1,

reflection across the line y = x .
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In general,

The composite of two reflections is a rotation.

The composite of two rotations is a rotation.

The composite of a reflection and a rotation is a reflection.

Both reflections and rotations are orthogonal: A−1 = AT . The
rotations are the 2× 2 orthogonal matrices with determinant 1,
and the reflections are those with determinant −1.
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Example

Find the rotation or reflection that equals reflection across the line
y = −x followed by reflection across the y -axis.

We must find the matrix for the transformation QY ◦ Q−1.

Q−1 is induced by

A =
1

2

[
0 −2
−2 0

]
=

[
0 −1
−1 0

]
,

and QY is induced by

B =

[
−1 0

0 1

]
.

Therefore, QY ◦ Q−1 is induced by BA.
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Example (continued)

BA =

[
−1 0

0 1

] [
0 −1
−1 0

]
=

[
0 1
−1 0

]
.

We know BA is a rotation, and it must be rotation through an
angle θ such that

cos θ = 0 and sin θ = −1.

Therefore, QY ◦ Q−1 = R−π
2

= R 3π
2

.
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Summary

1 More Matrix Transformations

2 Vector Operations

3 Reflections and Rotations
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