Geometric Interpretation

Linear Methods (Math 211) Lecture 25 - §3.3

(with slides adapted from K. Seyffarth)

David Roe

November 8, 2013

Geometric Interpretation

Recall

- Polynomial Interpolation
- Vandermonde Determinants
- Oiagonalization

2 Geometric Interpretation

Definition

Let A be an $n \times n$ matrix, λ a real number, and $\mathbf{x} \neq 0$ an *n*-vector. If $A\mathbf{x} = \lambda \mathbf{x}$, then λ is an eigenvalue of A, and \mathbf{x} is an eigenvector of A corresponding to λ , or a λ -eigenvector.

Examples

Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Then
 $A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3\mathbf{x}$.
This means that 3 is an eigenvalue of A, and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A corresponding to 3 (or a 3-eigenvector of A).

Finding all Eigenvalues and Eigenvectors of a Matrix

Suppose that A is an $n \times n$ matrix, $\mathbf{x} \neq 0$ an *n*-vector, $\lambda \in \mathbb{R}$, and that $A\mathbf{x} = \lambda \mathbf{x}$. Then

$$\lambda \mathbf{x} - A \mathbf{x} = 0$$
$$\lambda I \mathbf{x} - A \mathbf{x} = 0$$
$$(\lambda I - A) \mathbf{x} = 0$$

Since $\mathbf{x} \neq \mathbf{0}$, the matrix $\lambda I - A$ has no inverse, and thus

 $\det(\lambda I - A) = 0.$

Definition

The characteristic polynomial of an $n \times n$ matrix A is

$$c_A(x) = \det(xI - A).$$

Example

Find the characteristic polynomial of $A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$.

Definition

The characteristic polynomial of an $n \times n$ matrix A is

$$c_A(x) = \det(xI - A).$$

Example

Find the characteristic polynomial of $A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$.

$$c_A(x) = \det \left(\begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} - \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \right)$$
$$= \det \begin{bmatrix} x - 4 & 2 \\ 1 & x - 3 \end{bmatrix}$$
$$= (x - 4)(x - 3) - 2$$
$$= x^2 - 7x + 10$$

Geometric Interpretation

Theorem ($\S3.3$ Theorem 2)

Let A be an $n \times n$ matrix.

- The eigenvalues of A are the roots of $c_A(x)$.
- **2** The λ -eigenvectors **x** are the nontrivial solutions to $(\lambda I A)\mathbf{x} = 0.$

Example (continued)

Find the eigenvalues of
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
.

Theorem ($\S3.3$ Theorem 2)

Let A be an $n \times n$ matrix.

- The eigenvalues of A are the roots of $c_A(x)$.
- **2** The λ -eigenvectors **x** are the nontrivial solutions to $(\lambda I A)\mathbf{x} = 0.$

Example (continued)

Find the eigenvalues of
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
.

We have

$$c_A(x) = x^2 - 7x + 10 = (x - 2)(x - 5),$$

so A has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 5$.

Example (continued)

Find the eigenvectors of
$$A = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

г

-2⁻ 3

Eigenvectors

Example (continued)

Find the eigenvectors of
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
.
To find the 2-eigenvectors of A , solve $(2I - A)\mathbf{x} = 0$:

$$\begin{bmatrix} -2 & 2 & | & 0 \\ 1 & -1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & | & 0 \\ -2 & 2 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

The general solution, in parametric form, is

$$\mathbf{x} = egin{bmatrix} t \ t \end{bmatrix} = t egin{bmatrix} 1 \ 1 \end{bmatrix}$$
 where $t \in \mathbb{R}.$

Geometric Interpretation 00000

Example (continued)

Recall that
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
.
To find the 5-eigenvectors of A , solve $(5I - A)\mathbf{x} = 0$:
 $\begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

The general solution, in parametric form, is

$$\mathbf{x} = \begin{bmatrix} -2s \\ s \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
 where $s \in \mathbb{R}$.

Basic Eigenvectors

Definition

A basic eigenvector of an $n \times n$ matrix A is any nonzero multiple of a basic solution to $(\lambda I - A)\mathbf{x} = 0$, where λ is an eigenvalue of A.

Example (continued)

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} -2 \\ 1 \end{bmatrix} \text{ are basic eigenvectors of the matrix}$

$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$

corresponding to eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 5$, respectively.

Example

For
$$A = \begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$
, find $c_A(x)$, the eigenvalues of A , and the corresponding basic eigenvectors

corresponding basic eigenvectors.

Example

For
$$A = \begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$
, find $c_A(x)$, the eigenvalues of A , and the corresponding basic eigenvectors.

$$det(xI - A) = \begin{vmatrix} x - 3 & 4 & -2 \\ -1 & x + 2 & -2 \\ -1 & 5 & x - 5 \end{vmatrix} = \begin{vmatrix} x - 3 & 4 & -2 \\ 0 & x - 3 & -x + 3 \\ -1 & 5 & x - 5 \end{vmatrix}$$
$$= \begin{vmatrix} x - 3 & 4 & 2 \\ 0 & x - 3 & 0 \\ -1 & 5 & x \end{vmatrix} = (x - 3) \begin{vmatrix} x - 3 & 2 \\ -1 & x \end{vmatrix}$$
$$c_A(x) = (x - 3)(x^2 - 3x + 2) = (x - 3)(x - 2)(x - 1).$$

Example (continued)

Therefore, the eigenvalues of A are $\lambda_1 = 3, \lambda_2 = 2$, and $\lambda_3 = 1$.

Basic eigenvectors corresponding to $\lambda_1 = 3$: solve $(3I - A)\mathbf{x} = 0$.

$$\begin{bmatrix} 0 & 4 & -2 & | & 0 \\ -1 & 5 & -2 & | & 0 \\ -1 & 5 & -2 & | & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -\frac{1}{2} & | & 0 \\ 0 & 1 & -\frac{1}{2} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Thus $\mathbf{x} = \begin{bmatrix} \frac{1}{2}t \\ \frac{1}{2}t \\ t \end{bmatrix} = t \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{bmatrix}$, $t \in \mathbb{R}$.
Choosing $t = 2$ gives us $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ as a basic eigenvector corresponding to $\lambda_1 = 3$.

Geometric Interpretation

Example (continued)

Basic eigenvectors corresponding to $\lambda_2 = 2$: solve $(2I - A)\mathbf{x} = 0$.

$$\begin{bmatrix} -1 & 4 & -2 & | & 0 \\ -1 & 4 & -2 & | & 0 \\ -1 & 5 & -3 & | & 0 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & -2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Thus
$$\mathbf{x} = \begin{bmatrix} 2s \\ s \\ s \end{bmatrix} = s \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
, $s \in \mathbb{R}$.
Choosing $s = 1$ gives us $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ as a basic eigenvector corresponding to $\lambda_2 = 2$.

Geometric Interpretation

Example (continued)

Basic eigenvectors corresponding to $\lambda_3 = 1$: solve $(I - A)\mathbf{x} = 0$.

$$\begin{bmatrix} -2 & 4 & -2 & | & 0 \\ -1 & 3 & -2 & | & 0 \\ -1 & 5 & -4 & | & 0 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Thus
$$\mathbf{x} = \begin{bmatrix} r \\ r \\ r \end{bmatrix} = r \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $r \in \mathbb{R}$.
Choosing $r = 1$ gives us $\mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ as a basic eigenvector corresponding to $\lambda_3 = 1$.

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2 × 2 matrix. Then A can be interpreted as a linear transformation T_A from \mathbb{R}^2 to \mathbb{R}^2 .

Problem

How does T_A affect the eigenvectors of the matrix?

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2 × 2 matrix. Then A can be interpreted as a linear transformation T_A from \mathbb{R}^2 to \mathbb{R}^2 .

Problem

How does T_A affect the eigenvectors of the matrix?

Definition

Let **v** be a nonzero vector in \mathbb{R}^2 . We denote by L_v the unique line in \mathbb{R}^2 that contains **v** and the origin.

Lemma (§3.3 Lemma 1)

Let \bm{v} be a nonzero vector in $\mathbb{R}^2.$ Then $L_{\bm{v}}$ is the set of all scalar multiples of $\bm{v},$ i.e.

$$L_{\mathbf{v}} = \mathbb{R}\mathbf{v} = \{t\mathbf{v} \mid t \in \mathbb{R}\}.$$

Definition

Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector Ax lies in L whenever x lies in L:

- Ax is a scalar multiple of x,
- $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar $\lambda \in \mathbb{R}$,
- **x** is an eigenvector of *A*.

Theorem ($\S3.3$ Theorem 3)

Let A be a 2×2 matrix and let $\mathbf{v} \neq 0$ be a vector in \mathbb{R}^2 . Then $L_{\mathbf{v}}$ is A-invariant if and only if \mathbf{v} is an eigenvector of A.

This theorem provides a geometrical method for finding the eigenvectors of a 2×2 matrix.

Example ($\S3.3$ Example 6)

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$ given by reflection in the line y = mx. Find the eigenvalues and eigenvectors of Q_m .

Example ($\S3.3$ Example 6)

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$ given by reflection in the line y = mx. Find the eigenvalues and eigenvectors of Q_m .

The matrix that induces Q_m is

$$A = \frac{1}{1+m^2} \begin{bmatrix} 1 - m^2 & 2m \\ 2m & m^2 - 1 \end{bmatrix}$$

 $\mathbf{x}_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$ is a 1-eigenvector of A. The reason for this: $\mathbf{x}_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$ lies in the line y = mx, and hence

$$\mathcal{Q}_m \begin{bmatrix} 1 \\ m \end{bmatrix} = \begin{bmatrix} 1 \\ m \end{bmatrix}$$
, implying that $A \begin{bmatrix} 1 \\ m \end{bmatrix} = 1 \begin{bmatrix} 1 \\ m \end{bmatrix}$.

Example (continued)

More generally, any vector $\begin{bmatrix} k \\ km \end{bmatrix}$, $k \neq 0$, lies in the line y = mxand is an eigenvector of A. The perpendicular vector $\begin{bmatrix} -m \\ 1 \end{bmatrix}$ is reflected directly across the line and is thus also an eigenvector for A with eigenvalue -1.

Example (§3.3 Example 7)

Let θ be a real number, and $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$A = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

Find the eigenvalues of A.

Example (§3.3 Example 7)

Let θ be a real number, and $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$A = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

Find the eigenvalues of A.

A has no real eigenvectors unless θ is an integer multiple of π $(\pm \pi, \pm 2\pi, \pm 3\pi, \ldots)$ since for other values of θ there are no invariant lines.

Geometric Interpretation

Eigenvalues and Eigenvectors

2 Geometric Interpretation