Linear Methods (Math 211) Lecture 25 - $\S 3.3$

(with slides adapted from K. Seyffarth)

David Roe

November 8, 2013

Recall

(1) Polynomial Interpolation
(2) Vandermonde Determinants
(3) Diagonalization

Today

(1) Eigenvalues and Eigenvectors
(2) Geometric Interpretation

Eigenvalues and Eigenvectors

Definition

Let A be an $n \times n$ matrix, λ a real number, and $\mathbf{x} \neq 0$ an n-vector. If $A \mathbf{x}=\lambda \mathbf{x}$, then λ is an eigenvalue of A, and \mathbf{x} is an eigenvector of A corresponding to λ, or a λ-eigenvector.

Examples

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right] \text { and } \mathbf{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text {. Then } \\
& \qquad A \mathbf{x}=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1
\end{array}\right]=3 \mathbf{x}
\end{aligned}
$$

This means that 3 is an eigenvalue of A, and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of A corresponding to 3 (or a 3 -eigenvector of A).

Finding all Eigenvalues and Eigenvectors of a Matrix

Suppose that A is an $n \times n$ matrix, $\mathbf{x} \neq 0$ an n-vector, $\lambda \in \mathbb{R}$, and that $A \mathbf{x}=\lambda \mathbf{x}$. Then

$$
\begin{array}{r}
\lambda \mathbf{x}-A \mathbf{x}=0 \\
\lambda / \mathbf{x}-A \mathbf{x}=0 \\
(\lambda I-A) \mathbf{x}=0
\end{array}
$$

Since $\mathbf{x} \neq 0$, the matrix $\lambda I-A$ has no inverse, and thus

$$
\operatorname{det}(\lambda I-A)=0
$$

Definition

The characteristic polynomial of an $n \times n$ matrix A is

$$
c_{A}(x)=\operatorname{det}(x I-A) .
$$

Example

Find the characteristic polynomial of $A=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$.

Definition

The characteristic polynomial of an $n \times n$ matrix A is

$$
c_{A}(x)=\operatorname{det}(x I-A) .
$$

Example

Find the characteristic polynomial of $A=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$.

$$
\begin{aligned}
c_{A}(x) & =\operatorname{det}\left(\left[\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right]-\left[\begin{array}{rr}
4 & -2 \\
-1 & 3
\end{array}\right]\right) \\
& =\operatorname{det}\left[\begin{array}{cc}
x-4 & 2 \\
1 & x-3
\end{array}\right] \\
& =(x-4)(x-3)-2 \\
& =x^{2}-7 x+10
\end{aligned}
$$

Theorem (§3.3 Theorem 2)

Let A be an $n \times n$ matrix.
(1) The eigenvalues of A are the roots of $c_{A}(x)$.
(2) The λ-eigenvectors \mathbf{x} are the nontrivial solutions to $(\lambda I-A) \mathbf{x}=0$.

Example (continued)

Find the eigenvalues of $A=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$.

Theorem (§3.3 Theorem 2)

Let A be an $n \times n$ matrix.
(1) The eigenvalues of A are the roots of $c_{A}(x)$.
(2) The λ-eigenvectors \mathbf{x} are the nontrivial solutions to $(\lambda I-A) \mathbf{x}=0$.

Example (continued)

Find the eigenvalues of $A=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$.
We have

$$
c_{A}(x)=x^{2}-7 x+10=(x-2)(x-5)
$$

so A has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=5$.

Eigenvectors

Example (continued)

Find the eigenvectors of $A=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$.

Eigenvectors

Example (continued)

Find the eigenvectors of $A=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$.
To find the 2-eigenvectors of A, solve $(2 I-A) \mathbf{x}=0$:

$$
\left[\begin{array}{rr|r}
-2 & 2 & 0 \\
1 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -1 & 0 \\
-2 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The general solution, in parametric form, is

$$
\mathbf{x}=\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { where } t \in \mathbb{R} .
$$

Example (continued)

Recall that $A=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$.
To find the 5 -eigenvectors of A, solve $(5 I-A) \mathbf{x}=0$:

$$
\left[\begin{array}{ll|l}
1 & 2 & 0 \\
1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The general solution, in parametric form, is

$$
\mathbf{x}=\left[\begin{array}{r}
-2 s \\
s
\end{array}\right]=s\left[\begin{array}{r}
-2 \\
1
\end{array}\right] \text { where } s \in \mathbb{R} .
$$

Basic Eigenvectors

Definition

A basic eigenvector of an $n \times n$ matrix A is any nonzero multiple of a basic solution to $(\lambda I-A) \mathbf{x}=0$, where λ is an eigenvalue of A.

Example (continued)

$\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$ are basic eigenvectors of the matrix

$$
A=\left[\begin{array}{rr}
4 & -2 \\
-1 & 3
\end{array}\right]
$$

corresponding to eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=5$, respectively.

Example

For $A=\left[\begin{array}{lll}3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5\end{array}\right]$, find $c_{A}(x)$, the eigenvalues of A, and the corresponding basic eigenvectors.

Example

For $A=\left[\begin{array}{lll}3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5\end{array}\right]$, find $c_{A}(x)$, the eigenvalues of A, and the corresponding basic eigenvectors.

$$
\begin{aligned}
\operatorname{det}(x I-A) & =\left|\begin{array}{ccc}
x-3 & 4 & -2 \\
-1 & x+2 & -2 \\
-1 & 5 & x-5
\end{array}\right|=\left|\begin{array}{ccc}
x-3 & 4 & -2 \\
0 & x-3 & -x+3 \\
-1 & 5 & x-5
\end{array}\right| \\
& =\left|\begin{array}{ccc}
x-3 & 4 & 2 \\
0 & x-3 & 0 \\
-1 & 5 & x
\end{array}\right|=(x-3)\left|\begin{array}{cc}
x-3 & 2 \\
-1 & x
\end{array}\right| \\
c_{A}(x) & =(x-3)\left(x^{2}-3 x+2\right)=(x-3)(x-2)(x-1) .
\end{aligned}
$$

Example (continued)

Therefore, the eigenvalues of A are $\lambda_{1}=3, \lambda_{2}=2$, and $\lambda_{3}=1$.
Basic eigenvectors corresponding to $\lambda_{1}=3$: solve $(3 I-A) \mathbf{x}=0$.

$$
\left[\begin{array}{rrr|r}
0 & 4 & -2 & 0 \\
-1 & 5 & -2 & 0 \\
-1 & 5 & -2 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & -\frac{1}{2} & 0 \\
0 & 1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus $\mathbf{x}=\left[\begin{array}{c}\frac{1}{2} t \\ \frac{1}{2} t \\ t\end{array}\right]=t\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right], t \in \mathbb{R}$.
Choosing $t=2$ gives us $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ as a basic eigenvector corresponding to $\lambda_{1}=3$.

Example (continued)

Basic eigenvectors corresponding to $\lambda_{2}=2$: solve $(2 I-A) \mathbf{x}=0$.

$$
\left[\begin{array}{lll|l}
-1 & 4 & -2 & 0 \\
-1 & 4 & -2 & 0 \\
-1 & 5 & -3 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & -2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus $\mathbf{x}=\left[\begin{array}{r}2 s \\ s \\ s\end{array}\right]=s\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right], s \in \mathbb{R}$.
Choosing $s=1$ gives us $\mathbf{x}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ as a basic eigenvector corresponding to $\lambda_{2}=2$.

Example (continued)

Basic eigenvectors corresponding to $\lambda_{3}=1$: solve $(I-A) \mathbf{x}=0$.

$$
\left[\begin{array}{lll|l}
-2 & 4 & -2 & 0 \\
-1 & 3 & -2 & 0 \\
-1 & 5 & -4 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus $\mathbf{x}=\left[\begin{array}{l}r \\ r \\ r\end{array}\right]=r\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], r \in \mathbb{R}$.
Choosing $r=1$ gives us $\mathbf{x}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ as a basic eigenvector corresponding to $\lambda_{3}=1$.

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2×2 matrix. Then A can be interpreted as a linear transformation T_{A} from \mathbb{R}^{2} to \mathbb{R}^{2}.

Problem
How does T_{A} affect the eigenvectors of the matrix?

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2×2 matrix. Then A can be interpreted as a linear transformation T_{A} from \mathbb{R}^{2} to \mathbb{R}^{2}.

Problem

How does T_{A} affect the eigenvectors of the matrix?

Definition

Let \mathbf{v} be a nonzero vector in \mathbb{R}^{2}. We denote by L_{v} the unique line in \mathbb{R}^{2} that contains \mathbf{v} and the origin.

Lemma (§3.3 Lemma 1)
Let \mathbf{v} be a nonzero vector in \mathbb{R}^{2}. Then L_{v} is the set of all scalar multiples of \mathbf{v}, i.e.

$$
L_{\mathbf{v}}=\mathbb{R} \mathbf{v}=\{t \mathbf{v} \mid t \in \mathbb{R}\}
$$

Definition

Let A be a 2×2 matrix and L a line in \mathbb{R}^{2} through the origin.
Then L is said to be A-invariant if the vector $A \mathbf{x}$ lies in L whenever \mathbf{x} lies in L :

- $A \mathbf{x}$ is a scalar multiple of \mathbf{x},
- $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar $\lambda \in \mathbb{R}$,
- \mathbf{x} is an eigenvector of A.

Theorem (§3.3 Theorem 3)

Let A be a 2×2 matrix and let $\mathbf{v} \neq 0$ be a vector in \mathbb{R}^{2}. Then $L_{\mathbf{v}}$ is A-invariant if and only if \mathbf{v} is an eigenvector of A.

This theorem provides a geometrical method for finding the eigenvectors of a 2×2 matrix.

Example (§3.3 Example 6)

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by reflection in the line $y=m x$. Find the eigenvalues and eigenvectors of Q_{m}.

Example (§3.3 Example 6)

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by reflection in the line $y=m x$. Find the eigenvalues and eigenvectors of Q_{m}.
The matrix that induces Q_{m} is

$$
A=\frac{1}{1+m^{2}}\left[\begin{array}{cc}
1-m^{2} & 2 m \\
2 m & m^{2}-1
\end{array}\right] .
$$

$\mathbf{x}_{1}=\left[\begin{array}{c}1 \\ m\end{array}\right]$ is a 1-eigenvector of A.
The reason for this: $\mathbf{x}_{1}=\left[\begin{array}{c}1 \\ m\end{array}\right]$ lies in the line $y=m x$, and hence

$$
Q_{m}\left[\begin{array}{c}
1 \\
m
\end{array}\right]=\left[\begin{array}{c}
1 \\
m
\end{array}\right] \text {, implying that } A\left[\begin{array}{l}
1 \\
m
\end{array}\right]=1\left[\begin{array}{c}
1 \\
m
\end{array}\right] .
$$

Example (continued)

More generally, any vector $\left[\begin{array}{c}k \\ k m\end{array}\right], k \neq 0$, lies in the line $y=m x$ and is an eigenvector of A.

The perpendicular vector $\left[\begin{array}{c}-m \\ 1\end{array}\right]$ is reflected directly across the line and is thus also an eigenvector for A with eigenvalue -1 .

Example (§3.3 Example 7)

Let θ be a real number, and $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotation through an angle of θ, induced by the matrix

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Find the eigenvalues of A.

Example (§3.3 Example 7)

Let θ be a real number, and $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotation through an angle of θ, induced by the matrix

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Find the eigenvalues of A.
A has no real eigenvectors unless θ is an integer multiple of π $(\pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots)$ since for other values of θ there are no invariant lines.

Summary

(1) Eigenvalues and Eigenvectors
(2) Geometric Interpretation

