# Linear Methods (Math 211) <br> Lecture 23-§3.2 

(with slides adapted from K. Seyffarth)

## David Roe

November 4, 2013

Recall
(1) Determinants - Products, inverses and transpose
(2) Adjugates

## Today

(1) Determinants and Transpose
(2) Cramer's Rule
(3) Polynomial interpolation

4 Vandermonde Determinants

Example (§3.2 Exercise 17)
Let $A$ and $B$ be $n \times n$ matrices. Show that $\operatorname{det}\left(A+B^{T}\right)=\operatorname{det}\left(A^{T}+B\right)$.

## Example (§3.2 Exercise 17)

Let $A$ and $B$ be $n \times n$ matrices. Show that $\operatorname{det}\left(A+B^{T}\right)=\operatorname{det}\left(A^{T}+B\right)$.

Notice that

$$
\left(A+B^{T}\right)^{T}=A^{T}+\left(B^{T}\right)^{T}=A^{T}+B
$$

Since a matrix and it's transpose have the same determinant

$$
\begin{aligned}
\operatorname{det}\left(A+B^{T}\right) & =\operatorname{det}\left(\left(A+B^{T}\right)^{T}\right) \\
& =\operatorname{det}\left(A^{T}+B\right)
\end{aligned}
$$

## Example

For each of the following statements, determine if it is true or false, and supply a proof or a counterexample.

- If $\operatorname{adj} A$ exists, then $A$ is invertible.
- If $A$ and $B$ are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}\left(B^{T} A\right)$.
- Prove or give a counterexample to the following statement: if $\operatorname{det} A=1$, then $\operatorname{adj} A=A$.


## Example

For each of the following statements, determine if it is true or false, and supply a proof or a counterexample.

- If $\operatorname{adj} A$ exists, then $A$ is invertible. False. adj 0 exists, but 0 is not invertible.
- If $A$ and $B$ are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}\left(B^{T} A\right)$. True. $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B=\operatorname{det} B^{T} \cdot \operatorname{det} A=\operatorname{det} B^{T} A$.
- Prove or give a counterexample to the following statement: if $\operatorname{det} A=1$, then $\operatorname{adj} A=A$.
False. Note that if $\operatorname{det} A=1$ then $\operatorname{adj} A=A^{-1}$. There are plenty of matrices of determinant 1 for which $A \neq A^{-1}$ :
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ for example.


## Cramer's Rule

If $A$ is an $n \times n$ invertible matrix, then the solution to $A \mathbf{x}=\mathbf{b}$ can be given in terms of determinants of matrices.

## Theorem (§3.2 Theorem 5)

Let $A$ be an $n \times n$ invertible matrix, and consider the system $A \mathbf{x}=\mathbf{b}$, where $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{T}$.
We define $A_{i}$ to be the matrix obtained from $A$ by replacing column $i$ with $\mathbf{b}$. Then setting

$$
x_{i}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A}
$$

gives a solution to $A \mathbf{x}=\mathbf{b}$.
Note: This is a very inefficient method for large systems.

## Example

Solve for $x_{3}$ :

$$
\begin{array}{r}
3 x_{1}+x_{2}-x_{3}=-1 \\
5 x_{1}+2 x_{2}-x_{3}=2 \\
x_{1}+x_{2}-x_{3}=1
\end{array}
$$

## Example

Solve for $x_{3}$ :

$$
\begin{array}{r}
3 x_{1}+x_{2}-x_{3}=-1 \\
5 x_{1}+2 x_{2}- \\
x_{1}+x_{2}-x_{3}=2 \\
x_{1}=1
\end{array}
$$

By Cramer's rule, $x_{3}=\frac{\operatorname{det} A_{3}}{\operatorname{det} A}$, where

$$
A=\left[\begin{array}{rrr}
3 & 1 & -1 \\
5 & 2 & 0 \\
1 & 1 & -1
\end{array}\right] \text { and } A_{3}=\left[\begin{array}{rrr}
3 & 1 & -1 \\
5 & 2 & 2 \\
1 & 1 & 1
\end{array}\right]
$$

Computing the determinants of these two matrices,

$$
\operatorname{det} A=-4 \text { and } \operatorname{det} A_{3}=-6 .
$$

Therefore, $x_{3}=\frac{-6}{-4}=\frac{3}{2}$.

Example (continued)
We can also compute $\operatorname{det} A_{1}$ and $\operatorname{det} A_{2}$, where

$$
A_{1}=\left[\begin{array}{rrr}
-1 & 1 & -1 \\
2 & 2 & 0 \\
1 & 1 & -1
\end{array}\right] \text { and } A_{2}=\left[\begin{array}{rrr}
3 & -1 & -1 \\
5 & 2 & 0 \\
1 & 1 & -1
\end{array}\right]
$$

and then solve for $x_{1}$ and $x_{2}$.
We get $x_{1}=-1, x_{2}=\frac{7}{2}$.

## Polynomial Interpolation

Example
Given data points $(0,1),(1,2),(2,5)$ and $(3,10)$, find an interpolating polynomial $p(x)$ of degree at most three, and then estimate the value of $y$ corresponding to $x=\frac{3}{2}$.

## Polynomial Interpolation

## Example

Given data points $(0,1),(1,2),(2,5)$ and $(3,10)$, find an interpolating polynomial $p(x)$ of degree at most three, and then estimate the value of $y$ corresponding to $x=\frac{3}{2}$.

We want to find the coefficients $r_{0}, r_{1}, r_{2}$ and $r_{3}$ of

$$
p(x)=r_{0}+r_{1} x+r_{2} x^{2}+r_{3} x^{3}
$$

so that $p(0)=1, p(1)=2, p(2)=5$, and $p(3)=10$.

$$
\begin{aligned}
& p(0)=r_{0}=1 \\
& p(1)=r_{0}+r_{1}+r_{2}+r_{3}=2 \\
& p(2)=r_{0}+2 r_{1}+4 r_{2}+8 r_{3}=5 \\
& p(3)=r_{0}+3 r_{1}+9 r_{2}+27 r_{3}=10
\end{aligned}
$$

## Example (continued)

Solve this system of four equations in the four variables $r_{0}, r_{1}, r_{2}$ and $r_{3}$.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 2 \\
1 & 2 & 4 & 8 & 5 \\
1 & 3 & 9 & 27 & 10
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{llll|l}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Therefore $r_{0}=1, r_{1}=0, r_{2}=1, r_{3}=0$, and so

$$
p(x)=1+x^{2} .
$$

The estimate is

$$
y=p\left(\frac{3}{2}\right)=1+\left(\frac{3}{2}\right)^{2}=\frac{13}{4}
$$

## Theorem (§3.2 Theorem 6)

Given $n$ data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with the $x_{i}$ distinct, there is a unique polynomial

$$
p(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n-1} x^{n-1}
$$

such that $p\left(x_{i}\right)=y_{i}$ for $i=1,2, \ldots, n$.

The polynomial $p(x)$ is called the interpolating polynomial for the data. We will prove that interpolating polynomials exist and are unique in the next few slides.

To find $p(x)$, set up a system of $n$ linear equations in the $n$ variables $r_{0}, r_{1}, r_{2}, \ldots, r_{n-1}$.

$$
p(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n-1} x^{n-1}
$$

$$
\begin{array}{r}
r_{0}+r_{1} x_{1}+r_{2} x_{1}^{2}+\cdots+r_{n-1} x_{1}^{n-1}=y_{1} \\
r_{0}+r_{1} x_{2}+r_{2} x_{2}^{2}+\cdots+r_{n-1} x_{2}^{n-1}=y_{2} \\
r_{0}+r_{1} x_{3}+r_{2} x_{3}^{2}+\cdots+r_{n-1} x_{3}^{n-1}=y_{3} \\
\vdots \\
\vdots \\
r_{0}+r_{1} x_{n}+r_{2} x_{n}^{2}+\cdots+r_{n-1} x_{n}^{n-1}=y_{n}
\end{array}
$$

The coefficient matrix for this system is

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right]
$$

The determinant of a matrix of this form is called a Vandermonde determinant.

## The Vandermonde Determinant

## Theorem (§3.2 Theorem 7)

Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers, $n \geq 2$. The the corresponding Vandermonde determinant is

$$
\operatorname{det}\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right]=\Pi_{1 \leq j<i \leq n}\left(x_{i}-x_{j}\right) .
$$

Example
In our earlier example with the data points $(0,1),(1,2),(2,5)$ and $(3,10)$, we have

$$
x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=3
$$

giving us the Vandermonde determinant

$$
\left|\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27
\end{array}\right|
$$

## Example

In our earlier example with the data points $(0,1),(1,2),(2,5)$ and $(3,10)$, we have

$$
x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=3
$$

giving us the Vandermonde determinant

$$
\left|\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27
\end{array}\right|
$$

According to Theorem 7, this determinant is equal to

$$
\begin{aligned}
& \left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right)\left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right) \\
& =(1-0)(2-0)(2-1)(3-0)(3-1)(3-2)=2 \times 3 \times 2 \\
& =12
\end{aligned}
$$

As a consequence of Theorem 7, the Vandermonde determinant is nonzero if $a_{1}, a_{2}, \ldots, a_{n}$ are distinct.

This means that given $n$ data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with distinct $x_{i}$, then there is a unique interpolating polynomial

$$
p(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n-1} x^{n-1} .
$$

## Summary

(1) Determinants and Transpose
(2) Cramer's Rule
(3) Polynomial interpolation

4 Vandermonde Determinants

