Linear Methods (Math 211)
 Lecture 27 - $\S 3.3$

(with slides adapted from K. Seyffarth)

David Roe

November 15, 2013

Recall
(1) Geometric Interpretation of Eigenvalues and Eigenvectors
(2) Diagonalization

Today

(1) Diagonalization
(2) Linear Dynamical Systems
(3) Approximate Solutions

Example

Diagonalize, if possible, the matrix $A=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3\end{array}\right]$.

Example

Diagonalize, if possible, the matrix $A=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3\end{array}\right]$.

$$
c_{A}(x)=\operatorname{det}(x I-A)=\left|\begin{array}{ccc}
x-1 & 0 & -1 \\
0 & x-1 & 0 \\
0 & 0 & x+3
\end{array}\right|=(x-1)^{2}(x+3)
$$

A has eigenvalues $\lambda_{1}=1$ of multiplicity two; $\lambda_{2}=-3$ of multiplicity one.

Example (continued)

Eigenvectors for $\lambda_{1}=1$: solve $(I-A) \mathbf{x}=0$.

$$
\left[\begin{array}{rrr|r}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\mathbf{x}=\left[\begin{array}{l}s \\ t \\ \text { are }\end{array}\right], s, t \in \mathbb{R}$ so basic eigenvectors corresponding to $\lambda_{1}=1, ~$

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Example (continued)

Eigenvectors for $\lambda_{2}=-3$: solve $(-3 I-A) \mathbf{x}=0$.

$$
\left.\begin{array}{l}
\mathbf{x}=\left[\begin{array}{rrr|r}
-4 & 0 & -1 & 0 \\
0 & -4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & \frac{1}{4} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\lambda_{2}=-3 \text { is } \\
0 \\
t
\end{array}\right], t \in \mathbb{R} \text { so a basic eigenvector corresponding to } \quad\left[\begin{array}{r}
-1 \\
0 \\
4
\end{array}\right] .
$$

Example (continued)
Let

$$
P=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 1 \\
4 & 0 & 0
\end{array}\right]
$$

Then P is invertible, and

$$
P^{-1} A P=\operatorname{diag}(-3,1,1)=\left[\begin{array}{ccc}
-3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Example

Show that $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$ is not diagonalizable.

Example

Show that $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$ is not diagonalizable.
First,

$$
c_{A}(x)=\left|\begin{array}{ccc}
x-1 & -1 & 0 \\
0 & x-1 & 0 \\
0 & 0 & x-2
\end{array}\right|=(x-1)^{2}(x-2)
$$

so A has eigenvalues $\lambda_{1}=1$ of multiplicity two; $\lambda_{2}=2$ (of multiplicity one).

Example (continued)

Eigenvectors for $\lambda_{1}=1$: solve $(I-A) \mathbf{x}=0$.

$$
\left[\begin{array}{rrr|r}
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, $\mathbf{x}=\left[\begin{array}{l}s \\ 0 \\ 0\end{array}\right], s \in \mathbb{R}$.
Since $\lambda_{1}=1$ has multiplicity two, but has only one basic eigenvector, A is not diagonalizable.

Definitions

A linear dynamical system consists of

- an $n \times n$ matrix A and an n-vector \mathbf{v}_{0};
- a matrix recursion defining $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots$ by $\mathbf{v}_{k+1}=A \mathbf{v}_{k}$; i.e.,

$$
\begin{aligned}
\mathbf{v}_{1} & =A \mathbf{v}_{0} \\
\mathbf{v}_{2} & =A \mathbf{v}_{1}=A\left(A \mathbf{v}_{0}\right)=A^{2} \mathbf{v}_{0} \\
\mathbf{v}_{3} & =A \mathbf{v}_{2}=A\left(A^{2} \mathbf{v}_{0}\right)=A^{3} \mathbf{v}_{0} \\
& \because \\
\mathbf{v}_{k} & =A^{k} \mathbf{v}_{0}
\end{aligned}
$$

Linear dynamical systems are used, for example, to model the evolution of populations over time.

If A is diagonalizable, then

$$
P^{-1} A P=D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the (not necessarily distinct) eigenvalues of A.

Thus $A=P D P^{-1}$, and $A^{k}=P D^{k} P^{-1}$. Therefore,

$$
\mathbf{v}_{k}=A^{k} \mathbf{v}_{0}=P D^{k} P^{-1} \mathbf{v}_{0}
$$

Example

Consider the linear dynamical system $\mathbf{v}_{k+1}=A \mathbf{v}_{k}$ with

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \text { and } \mathbf{v}_{0}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Find a formula for \mathbf{v}_{k}.

Example

Consider the linear dynamical system $\mathbf{v}_{k+1}=A \mathbf{v}_{k}$ with

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \text { and } \mathbf{v}_{0}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Find a formula for \mathbf{v}_{k}.
First, $c_{A}(x)=x^{2}-x-1$, so A has eigenvalues $\phi=\frac{1+\sqrt{5}}{2}$ and $\bar{\phi}=\frac{1-\sqrt{5}}{2}$, and thus is diagonalizable.

Solve $(A-\phi I) \mathbf{x}=0$:

$$
\left[\begin{array}{cc|c}
-\phi & 1 & 0 \\
1 & 1-\phi & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & \bar{\phi} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

has basic solution $\mathbf{x}=\left[\begin{array}{c}-\bar{\phi} \\ 1\end{array}\right]$.

Example (continued)

Solve $(A-\bar{\phi} I) \mathbf{x}=0$:

$$
\left[\begin{array}{cc|c}
-\bar{\phi} & 1 & 0 \\
1 & 1-\bar{\phi} & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & \phi & 0 \\
0 & 0 & 0
\end{array}\right]
$$

has basic solution $\overline{\mathbf{x}}=\left[\begin{array}{c}-\phi \\ 1\end{array}\right]$.
Thus, $P=\left[\begin{array}{cc}-\bar{\phi} & -\phi \\ 1 & 1\end{array}\right]$ is a diagonalizing matrix for A,

$$
P^{-1}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & \phi \\
-1 & -\bar{\phi}
\end{array}\right], \text { and } P^{-1} A P=\left[\begin{array}{cc}
\phi & 0 \\
0 & \bar{\phi}
\end{array}\right] .
$$

Example (continued)

Therefore,

$$
\begin{aligned}
\mathbf{v}_{k} & =A^{k} \mathbf{v}_{0} \\
& =P D^{k} P^{-1} \mathbf{v}_{0} \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
-\bar{\phi} & -\phi \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\phi & 0 \\
0 & \bar{\phi}
\end{array}\right]^{k}\left[\begin{array}{cc}
1 & \phi \\
-1 & -\bar{\phi}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
-\bar{\phi} & -\phi \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\phi^{k} & 0 \\
0 & \bar{\phi}^{k}
\end{array}\right]\left[\begin{array}{c}
\phi \\
-\bar{\phi}
\end{array}\right] \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
-\bar{\phi} & -\phi \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
\phi^{k+1} \\
-\bar{\phi}^{k+1}
\end{array}\right] \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{c}
\phi^{k}-\bar{\phi}^{k} \\
\phi^{k+1}-\bar{\phi}^{k+1}
\end{array}\right]
\end{aligned}
$$

Dominant Eigenvalues

Often, instead of finding an exact formula for \mathbf{v}_{k}, it suffices to estimate \mathbf{v}_{k} as k gets large.

This can easily be done if A has a dominant eigenvalue with multiplicity one: an eigenvalue λ_{1} with the property that

$$
\left|\lambda_{1}\right|>\left|\lambda_{j}\right| \text { for } j=2,3, \ldots, n
$$

Suppose that

$$
\mathbf{v}_{k}=P D^{k} P^{-1} \mathbf{v}_{0}
$$

and assume that A has a dominant eigenvalue, λ_{1}, with corresponding basic eigenvector \mathbf{x}_{1} as the first column of P.
For convenience, write $P^{-1} \mathbf{v}_{0}=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{n}\end{array}\right]^{T}$.

Then

$$
\begin{aligned}
\mathbf{v}_{k} & =P D^{k} P^{-1} \mathbf{v}_{0} \\
& =\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1}^{k} & 0 & \cdots & 0 \\
0 & \lambda_{2}^{k} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{n}^{k}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] \\
& =b_{1} \lambda_{1}^{k} \mathbf{x}_{1}+b_{2} \lambda_{2}^{k} \mathbf{x}_{2}+\cdots+b_{n} \lambda_{n}^{k} \mathbf{x}_{n} \\
& =\lambda_{1}^{k}\left(b_{1} \mathbf{x}_{1}+b_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \mathbf{x}_{2}+\cdots+b_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \mathbf{x}_{n}\right)
\end{aligned}
$$

Now, $\left|\frac{\lambda_{j}}{\lambda_{1}}\right|<1$ for $j=2,3, \ldots n$, and thus $\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty$.
Therefore, for large values of $k, \mathbf{v}_{k} \approx \lambda_{1}^{k} b_{1} \mathbf{x}_{1}$.

Example

If

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \text { and } \mathbf{v}_{0}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

estimate \mathbf{v}_{k} for large values of k.

Example

If

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \text { and } \mathbf{v}_{0}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

estimate \mathbf{v}_{k} for large values of k.
In our previous example, we found that A has eigenvalues $\phi \approx 1.6$ and $\bar{\phi} \approx-0.6$. Since $|\phi|>|\bar{\phi}|, \phi$ is a dominant eigenvalue.

As before $\mathbf{x}=\left[\begin{array}{c}-\bar{\phi} \\ 1\end{array}\right]$ is a basic eigenvector for ϕ, and $\overline{\mathbf{x}}=\left[\begin{array}{c}-\phi \\ 1\end{array}\right]$ is a basic eigenvector for $\bar{\phi}$, giving us

$$
P=\left[\begin{array}{rr}
-\bar{\phi} & -\phi \\
1 & 1
\end{array}\right], \text { and } P^{-1}=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1 & \phi \\
-1 & -\bar{\phi}
\end{array}\right]
$$

Example (continued)

$$
P^{-1} \mathbf{v}_{0}=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1 & \phi \\
-1 & -\bar{\phi}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{r}
\phi \\
-\bar{\phi}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

For large values of k,

$$
\mathbf{v}_{k} \approx \phi^{k} b_{1} \mathbf{x}=\phi^{k} \frac{\phi}{\sqrt{5}}\left[\begin{array}{r}
-\bar{\phi} \\
1
\end{array}\right]=\left[\begin{array}{r}
\phi^{k} \\
\phi^{k+1}
\end{array}\right]
$$

Let's compare this to the formula for \mathbf{v}_{k} that we obtained earlier:

$$
\mathbf{v}_{k}=\left[\begin{array}{c}
\phi^{k}-\bar{\phi}^{k} \\
\phi^{k+1}-\bar{\phi}^{k+1}
\end{array}\right]
$$

Summary

(1) Diagonalization
(2) Linear Dynamical Systems
(3) Approximate Solutions

