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Example

Diagonalize, if possible, the matrix A =

1 0 1
0 1 0
0 0 −3

.

cA(x) = det(xI − A) =

∣∣∣∣∣∣
x − 1 0 −1

0 x − 1 0
0 0 x + 3

∣∣∣∣∣∣ = (x − 1)2(x + 3).

A has eigenvalues λ1 = 1 of multiplicity two; λ2 = −3 of
multiplicity one.
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Example (continued)

Eigenvectors for λ1 = 1: solve (I − A)x = 0.0 0 −1 0
0 0 0 0
0 0 4 0

→
0 0 1 0

0 0 0 0
0 0 0 0



x =

st
0

, s, t ∈ R so basic eigenvectors corresponding to λ1 = 1

are 1
0
0

 ,
0

1
0


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Example (continued)

Eigenvectors for λ2 = −3: solve (−3I − A)x = 0.−4 0 −1 0
0 −4 0 0
0 0 0 0

→
1 0 1

4 0
0 1 0 0
0 0 0 0



x =

−1
4 t
0
t

, t ∈ R so a basic eigenvector corresponding to

λ2 = −3 is −1
0
4


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Example (continued)

Let

P =

−1 1 0
0 0 1
4 0 0

 .
Then P is invertible, and

P−1AP = diag(−3, 1, 1) =

−3 0 0
0 1 0
0 0 1

 .
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Example

Show that A =

1 1 0
0 1 0
0 0 2

 is not diagonalizable.

First,

cA(x) =

∣∣∣∣∣∣
x − 1 −1 0

0 x − 1 0
0 0 x − 2

∣∣∣∣∣∣ = (x − 1)2(x − 2),

so A has eigenvalues λ1 = 1 of multiplicity two; λ2 = 2 (of
multiplicity one).
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Example (continued)

Eigenvectors for λ1 = 1: solve (I − A)x = 0.0 −1 0 0
0 0 0 0
0 0 −1 0

→
0 1 0 0

0 0 1 0
0 0 0 0



Therefore, x =

s0
0

, s ∈ R.

Since λ1 = 1 has multiplicity two, but has only one basic
eigenvector, A is not diagonalizable.
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Definitions

A linear dynamical system consists of

an n × n matrix A and an n-vector v0;

a matrix recursion defining v1, v2, v3, . . . by vk+1 = Avk ; i.e.,

v1 = Av0

v2 = Av1 = A(Av0) = A2v0

v3 = Av2 = A(A2v0) = A3v0
...
...

...

vk = Akv0.

Linear dynamical systems are used, for example, to model the
evolution of populations over time.
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If A is diagonalizable, then

P−1AP = D = diag(λ1, λ2, . . . , λn),

where λ1, λ2, . . . , λn are the (not necessarily distinct) eigenvalues
of A.

Thus A = PDP−1, and Ak = PDkP−1. Therefore,

vk = Akv0 = PDkP−1v0.
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Example

Consider the linear dynamical system vk+1 = Avk with

A =

[
0 1
1 1

]
, and v0 =

[
0
1

]
.

Find a formula for vk .

First, cA(x) = x2 − x − 1, so A has eigenvalues φ = 1+
√
5

2 and

φ̄ = 1−
√
5

2 , and thus is diagonalizable.

Solve (A− φI )x = 0:[
−φ 1 0
1 1− φ 0

]
→
[

1 φ̄ 0
0 0 0

]

has basic solution x =

[
−φ̄
1

]
.
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Example (continued)

Solve (A− φ̄I )x = 0:[
−φ̄ 1 0
1 1− φ̄ 0

]
→
[

1 φ 0
0 0 0

]

has basic solution x̄ =

[
−φ
1

]
.

Thus, P =

[
−φ̄ −φ
1 1

]
is a diagonalizing matrix for A,

P−1 =
1√
5

[
1 φ
−1 −φ̄

]
, and P−1AP =

[
φ 0
0 φ̄

]
.
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Example (continued)

Therefore,

vk = Akv0

= PDkP−1v0

=
1√
5

[
−φ̄ −φ
1 1

] [
φ 0
0 φ̄

]k [
1 φ
−1 −φ̄

] [
0
1

]
=

1√
5

[
−φ̄ −φ
1 1

] [
φk 0
0 φ̄k

] [
φ
−φ̄

]
=

1√
5

[
−φ̄ −φ
1 1

] [
φk+1

−φ̄k+1

]
=

1√
5

[
φk − φ̄k

φk+1 − φ̄k+1

]
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Dominant Eigenvalues

Often, instead of finding an exact formula for vk , it suffices to
estimate vk as k gets large.

This can easily be done if A has a dominant eigenvalue with
multiplicity one: an eigenvalue λ1 with the property that

|λ1| > |λj | for j = 2, 3, . . . , n.
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Suppose that
vk = PDkP−1v0,

and assume that A has a dominant eigenvalue, λ1, with
corresponding basic eigenvector x1 as the first column of P.

For convenience, write P−1v0 =
[
b1 b2 · · · bn

]T
.
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Then

vk = PDkP−1v0

=
[
x1 x2 · · · xn

]

λk1 0 · · · 0
0 λk2 · · · 0
...

...
...

...
0 0 · · · λkn



b1
b2
...
bn


= b1λ

k
1x1 + b2λ

k
2x2 + · · ·+ bnλ

k
nxn

= λk1

(
b1x1 + b2

(
λ2
λ1

)k

x2 + · · ·+ bn

(
λn
λ1

)k

xn

)

Now,
∣∣∣ λj

λ1

∣∣∣ < 1 for j = 2, 3, . . . n, and thus
(

λj

λ1

)k
→ 0 as k →∞.

Therefore, for large values of k , vk ≈ λk1b1x1.
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Example

If

A =

[
0 1
1 1

]
, and v0 =

[
0
1

]
,

estimate vk for large values of k .

In our previous example, we found that A has eigenvalues φ ≈ 1.6
and φ̄ ≈ −0.6. Since |φ| > |φ̄|, φ is a dominant eigenvalue.

As before x =

[
−φ̄
1

]
is a basic eigenvector for φ, and x̄ =

[
−φ
1

]
is

a basic eigenvector for φ̄, giving us

P =

[
−φ̄ −φ

1 1

]
, and P−1 =

1√
5

[
1 φ
−1 −φ̄

]
.



Diagonalization Linear Dynamical Systems Approximate Solutions

Example

If

A =

[
0 1
1 1

]
, and v0 =

[
0
1

]
,

estimate vk for large values of k .

In our previous example, we found that A has eigenvalues φ ≈ 1.6
and φ̄ ≈ −0.6. Since |φ| > |φ̄|, φ is a dominant eigenvalue.

As before x =

[
−φ̄
1

]
is a basic eigenvector for φ, and x̄ =

[
−φ
1

]
is

a basic eigenvector for φ̄, giving us

P =

[
−φ̄ −φ

1 1

]
, and P−1 =

1√
5

[
1 φ
−1 −φ̄

]
.



Diagonalization Linear Dynamical Systems Approximate Solutions

Example (continued)

P−1v0 =
1√
5

[
1 φ
−1 −φ̄

] [
0
1

]
=

1√
5

[
φ
−φ̄

]
=

[
b1
b2

]

For large values of k ,

vk ≈ φkb1x = φk
φ√
5

[
−φ̄

1

]
=

[
φk

φk+1

]
Let’s compare this to the formula for vk that we obtained earlier:

vk =

[
φk − φ̄k

φk+1 − φ̄k+1

]
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Summary

1 Diagonalization

2 Linear Dynamical Systems

3 Approximate Solutions
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