Linear Dynamical Systems

Approximate Solutions

Linear Methods (Math 211) Lecture 27 - §3.3

(with slides adapted from K. Seyffarth)

David Roe

November 15, 2013

Recall

Linear Dynamical Systems

Approximate Solutions

- Geometric Interpretation of Eigenvalues and Eigenvectors
- Oiagonalization

Linear Dynamical Systems

2 Linear Dynamical Systems

3 Approximate Solutions

Approximate Solutions

Example

Diagonalize, if possible, the matrix
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$
.

Approximate Solutions

Example

Diagonalize, if possible, the matrix
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$
.

$$c_A(x) = \det(xI - A) = \begin{vmatrix} x - 1 & 0 & -1 \\ 0 & x - 1 & 0 \\ 0 & 0 & x + 3 \end{vmatrix} = (x - 1)^2 (x + 3).$$

Γ1 0 1**7**

A has eigenvalues $\lambda_1=1$ of multiplicity two; $\lambda_2=-3$ of multiplicity one.

Approximate Solutions

Example (continued)

Eigenvectors for
$$\lambda_1 = 1$$
: solve $(I - A)\mathbf{x} = 0$.

$$\begin{bmatrix} 0 & 0 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 4 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Approximate Solutions

Example (continued)

Eigenvectors for
$$\lambda_2 = -3$$
: solve $(-3I - A)\mathbf{x} = 0$.

$$\begin{bmatrix} -4 & 0 & -1 & | & 0 \\ 0 & -4 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & \frac{1}{4} & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Approximate Solutions

Example (continued)

Let

$$\mathsf{P} = egin{bmatrix} -1 & 1 & 0 \ 0 & 0 & 1 \ 4 & 0 & 0 \end{bmatrix}.$$

Then P is invertible, and

$$P^{-1}AP = diag(-3, 1, 1) = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Approximate Solutions

Example

Show that
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is not diagonalizable.

Approximate Solutions

Example

Show that
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is not diagonalizable.
First,

$$c_A(x) = \begin{vmatrix} x-1 & -1 & 0 \\ 0 & x-1 & 0 \\ 0 & 0 & x-2 \end{vmatrix} = (x-1)^2(x-2),$$

so A has eigenvalues $\lambda_1 = 1$ of multiplicity two; $\lambda_2 = 2$ (of multiplicity one).

Approximate Solutions

Example (continued)

Eigenvectors for
$$\lambda_1 = 1$$
: solve $(I - A)\mathbf{x} = 0$.

Therefore,
$$\mathbf{x} = \begin{bmatrix} s \\ 0 \\ 0 \end{bmatrix}$$
, $s \in \mathbb{R}$.
Since $\lambda_1 = 1$ has multiplicity two, but has only one basic eigenvector, A is not diagonalizable.

Linear Dynamical Systems •0000 Approximate Solutions

•

Definitions

A linear dynamical system consists of

- an $n \times n$ matrix A and an *n*-vector \mathbf{v}_0 ;
- a matrix recursion defining $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots$ by $\mathbf{v}_{k+1} = A\mathbf{v}_k$; i.e.,

$$\mathbf{v}_1 = A\mathbf{v}_0$$

$$\mathbf{v}_2 = A\mathbf{v}_1 = A(A\mathbf{v}_0) = A^2\mathbf{v}_0$$

$$\mathbf{v}_3 = A\mathbf{v}_2 = A(A^2\mathbf{v}_0) = A^3\mathbf{v}_0$$

$$\vdots$$

$$\mathbf{v}_k = A^k\mathbf{v}_0.$$

Linear dynamical systems are used, for example, to model the evolution of populations over time.

Approximate Solutions

If A is diagonalizable, then

$$P^{-1}AP = D = \mathsf{diag}(\lambda_1, \lambda_2, \dots, \lambda_n),$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the (not necessarily distinct) eigenvalues of A.

Thus $A = PDP^{-1}$, and $A^k = PD^kP^{-1}$. Therefore,

$$\mathbf{v}_k = A^k \mathbf{v}_0 = P D^k P^{-1} \mathbf{v}_0.$$

Example

Consider the linear dynamical system $\mathbf{v}_{k+1} = A\mathbf{v}_k$ with

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, ext{ and } \mathbf{v}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Find a formula for \mathbf{v}_k .

Example

Consider the linear dynamical system $\mathbf{v}_{k+1} = A\mathbf{v}_k$ with

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, and $\mathbf{v}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Find a formula for \mathbf{v}_k .

First, $c_A(x) = x^2 - x - 1$, so A has eigenvalues $\phi = \frac{1+\sqrt{5}}{2}$ and $\overline{\phi} = \frac{1-\sqrt{5}}{2}$, and thus is diagonalizable.

Solve $(A - \phi I)\mathbf{x} = 0$:

$$\begin{bmatrix} -\phi & 1 & & 0 \\ 1 & 1-\phi & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \bar{\phi} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

has basic solution $\mathbf{x} = \begin{bmatrix} -\bar{\phi} \\ 1 \end{bmatrix}$.

Linear Dynamical Systems

Approximate Solutions

Example (continued)

Solve $(A - \overline{\phi}I)\mathbf{x} = 0$: $\begin{bmatrix} -\phi & 1 \\ 1 & 1-\bar{\phi} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \phi & 0 \\ 0 & 0 & 0 \end{bmatrix}$ has basic solution $\mathbf{\bar{x}} = \begin{vmatrix} -\phi \\ 1 \end{vmatrix}$. Thus, $P = \begin{bmatrix} -\bar{\phi} & -\phi \\ 1 & 1 \end{bmatrix}$ is a diagonalizing matrix for A, $P^{-1} = \frac{1}{\sqrt{5}} \begin{vmatrix} 1 & \phi \\ -1 & -\overline{\phi} \end{vmatrix}$, and $P^{-1}AP = \begin{vmatrix} \phi & 0 \\ 0 & \overline{\phi} \end{vmatrix}$.

Approximate Solutions

Example (continued)

Therefore,

$$\begin{aligned} \mathbf{v}_{k} &= A^{k} \mathbf{v}_{0} \\ &= PD^{k}P^{-1} \mathbf{v}_{0} \\ &= \frac{1}{\sqrt{5}} \begin{bmatrix} -\bar{\phi} & -\phi \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \phi & 0 \\ 0 & \bar{\phi} \end{bmatrix}^{k} \begin{bmatrix} 1 & \phi \\ -1 & -\bar{\phi} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ &= \frac{1}{\sqrt{5}} \begin{bmatrix} -\bar{\phi} & -\phi \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \phi^{k} & 0 \\ 0 & \bar{\phi}^{k} \end{bmatrix} \begin{bmatrix} \phi \\ -\bar{\phi} \end{bmatrix} \\ &= \frac{1}{\sqrt{5}} \begin{bmatrix} -\bar{\phi} & -\phi \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \phi^{k+1} \\ -\bar{\phi}^{k+1} \end{bmatrix} \\ &= \frac{1}{\sqrt{5}} \begin{bmatrix} \phi^{k} - \bar{\phi}^{k} \\ \phi^{k+1} - \bar{\phi}^{k+1} \end{bmatrix} \end{aligned}$$

Linear Dynamical Systems

Approximate Solutions • 0000

Dominant Eigenvalues

Often, instead of finding an exact formula for \mathbf{v}_k , it suffices to estimate \mathbf{v}_k as k gets large.

This can easily be done if A has a dominant eigenvalue with multiplicity one: an eigenvalue λ_1 with the property that

$$|\lambda_1| > |\lambda_j|$$
 for $j = 2, 3, ..., n$.

Suppose that

$$\mathbf{v}_k = P D^k P^{-1} \mathbf{v}_0,$$

and assume that A has a dominant eigenvalue, λ_1 , with corresponding basic eigenvector \mathbf{x}_1 as the first column of P. For convenience, write $P^{-1}\mathbf{v}_0 = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}^T$.

Approximate Solutions

Then

$$\mathbf{v}_{k} = PD^{k}P^{-1}\mathbf{v}_{0}$$

$$= \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1}^{k} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}^{k} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}$$

$$= b_{1}\lambda_{1}^{k}\mathbf{x}_{1} + b_{2}\lambda_{2}^{k}\mathbf{x}_{2} + \cdots + b_{n}\lambda_{n}^{k}\mathbf{x}_{n}$$

$$= \lambda_{1}^{k} \left(b_{1}\mathbf{x}_{1} + b_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \mathbf{x}_{2} + \cdots + b_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \mathbf{x}_{n} \right)$$

Now, $\left|\frac{\lambda_j}{\lambda_1}\right| < 1$ for j = 2, 3, ..., n, and thus $\left(\frac{\lambda_j}{\lambda_1}\right)^k \to 0$ as $k \to \infty$.

Therefore, for large values of k, $\mathbf{v}_k \approx \lambda_1^k b_1 \mathbf{x}_1$.

Approximate Solutions

Example

lf

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \text{ and } \mathbf{v}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

estimate \mathbf{v}_k for large values of k.

Approximate Solutions

Example

lf

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \text{ and } \mathbf{v}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

estimate \mathbf{v}_k for large values of k.

In our previous example, we found that A has eigenvalues $\phi \approx 1.6$ and $\bar{\phi} \approx -0.6$. Since $|\phi| > |\bar{\phi}|$, ϕ is a dominant eigenvalue.

As before $\mathbf{x} = \begin{bmatrix} -\bar{\phi} \\ 1 \end{bmatrix}$ is a basic eigenvector for ϕ , and $\bar{\mathbf{x}} = \begin{bmatrix} -\phi \\ 1 \end{bmatrix}$ is a basic eigenvector for $\bar{\phi}$, giving us

$$P = \begin{bmatrix} -\bar{\phi} & -\phi \\ 1 & 1 \end{bmatrix}, \text{ and } P^{-1} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & \phi \\ -1 & -\bar{\phi} \end{bmatrix}$$

Linear Dynamical Systems

Approximate Solutions

Example (continued)

$$P^{-1}\mathbf{v}_0 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & \phi \\ -1 & -\bar{\phi} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} \phi \\ -\bar{\phi} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

For large values of k,

$$\mathbf{v}_k pprox \phi^k b_1 \mathbf{x} = \phi^k rac{\phi}{\sqrt{5}} egin{bmatrix} -ar{\phi} \ 1 \end{bmatrix} = egin{bmatrix} \phi^k \ \phi^{k+1} \end{bmatrix}$$

Let's compare this to the formula for \mathbf{v}_k that we obtained earlier:

$$\mathbf{v}_k = \begin{bmatrix} \phi^k - ar{\phi}^k \\ \phi^{k+1} - ar{\phi}^{k+1} \end{bmatrix}$$

Summary

Linear Dynamical Systems

Approximate Solutions

2 Linear Dynamical Systems

3 Approximate Solutions