Linear Methods (Math 211) Lecture 26 - §3.3

(with slides adapted from K. Seyffarth)

David Roe

November 13, 2013

Recall
(1) Eigenvalues and Eigenvectors

Today

(1) Geometric Interpretation
(2) Diagonalization

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2×2 matrix. Then A can be interpreted as a linear transformation T_{A} from \mathbb{R}^{2} to \mathbb{R}^{2}.

Problem
How does T_{A} affect the eigenvectors of the matrix?

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2×2 matrix. Then A can be interpreted as a linear transformation T_{A} from \mathbb{R}^{2} to \mathbb{R}^{2}.

Problem

How does T_{A} affect the eigenvectors of the matrix?

Definition

Let \mathbf{v} be a nonzero vector in \mathbb{R}^{2}. We denote by L_{v} the unique line in \mathbb{R}^{2} that contains \mathbf{v} and the origin.

Lemma (§3.3 Lemma 1)

Let \mathbf{v} be a nonzero vector in \mathbb{R}^{2}. Then L_{v} is the set of all scalar multiples of \mathbf{v}, i.e.

$$
L_{\mathbf{v}}=\mathbb{R} \mathbf{v}=\{t \mathbf{v} \mid t \in \mathbb{R}\}
$$

Definition

Let A be a 2×2 matrix and L a line in \mathbb{R}^{2} through the origin.
Then L is said to be A-invariant if the vector $A \mathbf{x}$ lies in L whenever \mathbf{x} lies in L :

- $A \mathbf{x}$ is a scalar multiple of \mathbf{x},
- $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar $\lambda \in \mathbb{R}$,
- \mathbf{x} is an eigenvector of A.

Theorem (§3.3 Theorem 3)

Let A be a 2×2 matrix and let $\mathbf{v} \neq 0$ be a vector in \mathbb{R}^{2}. Then $L_{\mathbf{v}}$ is A-invariant if and only if \mathbf{v} is an eigenvector of A.

This theorem provides a geometrical method for finding the eigenvectors of a 2×2 matrix.

Example (§3.3 Example 6)

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by reflection in the line $y=m x$. Find the eigenvalues and eigenvectors of Q_{m}.

Example (§3.3 Example 6)

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by reflection in the line $y=m x$. Find the eigenvalues and eigenvectors of Q_{m}.
The matrix that induces Q_{m} is

$$
A=\frac{1}{1+m^{2}}\left[\begin{array}{cc}
1-m^{2} & 2 m \\
2 m & m^{2}-1
\end{array}\right] .
$$

$\mathbf{x}_{1}=\left[\begin{array}{c}1 \\ m\end{array}\right]$ is a 1-eigenvector of A.
The reason for this: $\mathbf{x}_{1}=\left[\begin{array}{c}1 \\ m\end{array}\right]$ lies in the line $y=m x$, and hence

$$
Q_{m}\left[\begin{array}{c}
1 \\
m
\end{array}\right]=\left[\begin{array}{c}
1 \\
m
\end{array}\right] \text {, implying that } A\left[\begin{array}{c}
1 \\
m
\end{array}\right]=1\left[\begin{array}{c}
1 \\
m
\end{array}\right] .
$$

Example (continued)

More generally, any vector $\left[\begin{array}{c}k \\ k m\end{array}\right], k \neq 0$, lies in the line $y=m x$ and is an eigenvector of A.

The perpendicular vector $\left[\begin{array}{c}-m \\ 1\end{array}\right]$ is reflected directly across the line and is thus also an eigenvector for A with eigenvalue -1 .

Example (§3.3 Example 7)

Let θ be a real number, and $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotation through an angle of θ, induced by the matrix

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Find the eigenvalues of A.

Example (§3.3 Example 7)

Let θ be a real number, and $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotation through an angle of θ, induced by the matrix

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Find the eigenvalues of A.
A has no real eigenvectors unless θ is an integer multiple of π $(\pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots)$ since for other values of θ there are no invariant lines.

Diagonal Matrices

Notation. An $n \times n$ diagonal matrix

$$
D=\left[\begin{array}{cccccc}
a_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & a_{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & a_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{n-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & a_{n}
\end{array}\right]
$$

is written $\operatorname{diag}\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n-1}, a_{n}\right)$.
Recall that if A is an $n \times n$ matrix and P is an invertible $n \times n$ matrix so that $P^{-1} A P$ is diagonal, then P is called a diagonalizing matrix of A, and A is diagonalizable.

Theorem (§3.3 Theorem 4 \& 5 \& 6)

Let A be an $n \times n$ matrix.
(1) A is diagonalizable if and only if it has eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ so that

$$
P=\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}
\end{array}\right]
$$

is invertible. This occurs precisely when the total number of basic eigenvectors equals n.
(2) If P is invertible, then

$$
P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

where λ_{i} is the eigenvalue of A corresponding to the eigenvector \mathbf{x}_{i}, i.e., $A \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$.
(3) If all of the eigenvalues of A are distinct then A is diagonalizable.

Example

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
3 & -4 & 2 \\
1 & -2 & 2 \\
1 & -5 & 5
\end{array}\right] \text { has eigenvalues and basic eigenvectors } \\
& \lambda_{1}=3 \text { and } \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] ; \lambda_{2}=2 \text { and } \mathbf{x}_{2}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] ; \lambda_{3}=1 \text { and } \mathbf{x}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
\end{aligned}
$$

Diagonalize A.

Example

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
3 & -4 & 2 \\
1 & -2 & 2 \\
1 & -5 & 5
\end{array}\right] \text { has eigenvalues and basic eigenvectors } \\
& \lambda_{1}=3 \text { and } \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] ; \lambda_{2}=2 \text { and } \mathbf{x}_{2}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] ; \lambda_{3}=1 \text { and } \mathbf{x}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
\end{aligned}
$$

Diagonalize A.
Let $P=\left[\begin{array}{lll}\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 1\end{array}\right]$. By Theorem 4 and 5 ,

$$
P^{-1} A P=\operatorname{diag}(3,2,1)=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note. It is not always possible to find n eigenvectors so that P is invertible.

Example
Let $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1\end{array}\right]$. Is A diagonalizable?

Note. It is not always possible to find n eigenvectors so that P is invertible.

Example
Let $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1\end{array}\right]$. Is A diagonalizable?
Then

$$
c_{A}(x)=\left|\begin{array}{ccc}
x-1 & 2 & -3 \\
-2 & x-6 & 6 \\
-1 & -2 & x+1
\end{array}\right|=\cdots=(x-2)^{3} .
$$

A has only one eigenvalue, $\lambda_{1}=2$, with multiplicity three.
To find the 2-eigenvectors of A, solve the system $(2 I-A) \mathbf{x}=0$.

Example (continued)

$$
\left[\begin{array}{rrr|r}
1 & 2 & -3 & 0 \\
-2 & -4 & 6 & 0 \\
-1 & -2 & 3 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrr|r}
1 & 2 & -3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The general solution in parametric form is

$$
\mathbf{x}=\left[\begin{array}{c}
-2 s+3 t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right], s, t \in \mathbb{R}
$$

Since the system has only two basic solutions, there are only two basic eigenvectors, implying that the matrix A is not diagonalizable.

Example

Diagonalize, if possible, the matrix $A=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3\end{array}\right]$.

Example

Diagonalize, if possible, the matrix $A=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3\end{array}\right]$.

$$
c_{A}(x)=\operatorname{det}(x I-A)=\left|\begin{array}{ccc}
x-1 & 0 & -1 \\
0 & x-1 & 0 \\
0 & 0 & x+3
\end{array}\right|=(x-1)^{2}(x+3)
$$

A has eigenvalues $\lambda_{1}=1$ of multiplicity two; $\lambda_{2}=-3$ of multiplicity one.

Example (continued)

Eigenvectors for $\lambda_{1}=1$: solve $(I-A) \mathbf{x}=0$.

$$
\left[\begin{array}{rrr|r}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\mathbf{x}=\left[\begin{array}{l}s \\ t \\ \text { are }\end{array}\right], s, t \in \mathbb{R}$ so basic eigenvectors corresponding to $\lambda_{1}=1, ~$

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Example (continued)

Eigenvectors for $\lambda_{2}=-3$: solve $(-3 I-A) \mathbf{x}=0$.

$$
\left.\begin{array}{l}
\mathbf{x}=\left[\begin{array}{rrr|r}
-4 & 0 & -1 & 0 \\
0 & -4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & \frac{1}{4} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\lambda_{2}=-3 \text { is } t \\
0 \\
t
\end{array}\right], t \in \mathbb{R} \text { so a basic eigenvector corresponding to }
$$

Example (continued)
Let

$$
P=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 1 \\
4 & 0 & 0
\end{array}\right]
$$

Then P is invertible, and

$$
P^{-1} A P=\operatorname{diag}(-3,1,1)=\left[\begin{array}{ccc}
-3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Example

Show that $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$ is not diagonalizable.

Example

Show that $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$ is not diagonalizable.
First,

$$
c_{A}(x)=\left|\begin{array}{ccc}
x-1 & -1 & 0 \\
0 & x-1 & 0 \\
0 & 0 & x-2
\end{array}\right|=(x-1)^{2}(x-2)
$$

so A has eigenvalues $\lambda_{1}=1$ of multiplicity two; $\lambda_{2}=2$ (of multiplicity one).

Example (continued)

Eigenvectors for $\lambda_{1}=1$: solve $(I-A) \mathbf{x}=0$.

$$
\left[\begin{array}{rrr|r}
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, $\mathbf{x}=\left[\begin{array}{l}s \\ 0 \\ 0\end{array}\right], s \in \mathbb{R}$.
Since $\lambda_{1}=1$ has multiplicity two, but has only one basic eigenvector, A is not diagonalizable.

Summary

(1) Geometric Interpretation
(2) Diagonalization

