Linear Methods (Math 211) Lecture 26 - §3.3

(with slides adapted from K. Seyffarth)

David Roe

November 13, 2013

Diagonalization 00000000000

Eigenvalues and Eigenvectors

Diagonalization

Geometric Interpretation

2 Diagonalization

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2 × 2 matrix. Then A can be interpreted as a linear transformation T_A from \mathbb{R}^2 to \mathbb{R}^2 .

Problem

How does T_A affect the eigenvectors of the matrix?

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2 × 2 matrix. Then A can be interpreted as a linear transformation T_A from \mathbb{R}^2 to \mathbb{R}^2 .

Problem

How does T_A affect the eigenvectors of the matrix?

Definition

Let **v** be a nonzero vector in \mathbb{R}^2 . We denote by L_v the unique line in \mathbb{R}^2 that contains **v** and the origin.

Lemma (§3.3 Lemma 1)

Let \bm{v} be a nonzero vector in $\mathbb{R}^2.$ Then $L_{\bm{v}}$ is the set of all scalar multiples of $\bm{v},$ i.e.

$$L_{\mathbf{v}} = \mathbb{R}\mathbf{v} = \{t\mathbf{v} \mid t \in \mathbb{R}\}.$$

Definition

Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector Ax lies in L whenever x lies in L:

- Ax is a scalar multiple of x,
- $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar $\lambda \in \mathbb{R}$,
- **x** is an eigenvector of *A*.

Theorem ($\S3.3$ Theorem 3)

Let A be a 2×2 matrix and let $\mathbf{v} \neq 0$ be a vector in \mathbb{R}^2 . Then $L_{\mathbf{v}}$ is A-invariant if and only if \mathbf{v} is an eigenvector of A.

This theorem provides a geometrical method for finding the eigenvectors of a 2×2 matrix.

Example ($\S3.3$ Example 6)

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$ given by reflection in the line y = mx. Find the eigenvalues and eigenvectors of Q_m .

Example ($\S3.3$ Example 6)

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$ given by reflection in the line y = mx. Find the eigenvalues and eigenvectors of Q_m .

The matrix that induces Q_m is

$$A = \frac{1}{1+m^2} \begin{bmatrix} 1 - m^2 & 2m \\ 2m & m^2 - 1 \end{bmatrix}$$

 $\mathbf{x}_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$ is a 1-eigenvector of A. The reason for this: $\mathbf{x}_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$ lies in the line y = mx, and hence

$$Q_m \begin{bmatrix} 1 \\ m \end{bmatrix} = \begin{bmatrix} 1 \\ m \end{bmatrix}$$
, implying that $A \begin{bmatrix} 1 \\ m \end{bmatrix} = 1 \begin{bmatrix} 1 \\ m \end{bmatrix}$

More generally, any vector $\begin{bmatrix} k \\ km \end{bmatrix}$, $k \neq 0$, lies in the line y = mxand is an eigenvector of A. The perpendicular vector $\begin{bmatrix} -m \\ 1 \end{bmatrix}$ is reflected directly across the line and is thus also an eigenvector for A with eigenvalue -1.

Example (§3.3 Example 7)

Let θ be a real number, and $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$\mathsf{A} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

.

Find the eigenvalues of A.

Example (§3.3 Example 7)

Let θ be a real number, and $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$A = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

Find the eigenvalues of A.

A has no real eigenvectors unless θ is an integer multiple of π $(\pm \pi, \pm 2\pi, \pm 3\pi, \ldots)$ since for other values of θ there are no invariant lines.

Diagonal Matrices

Notation. An $n \times n$ diagonal matrix

$$D = \begin{bmatrix} a_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & a_n \end{bmatrix}$$

is written diag $(a_1, a_2, a_3, ..., a_{n-1}, a_n)$.

Recall that if A is an $n \times n$ matrix and P is an invertible $n \times n$ matrix so that $P^{-1}AP$ is diagonal, then P is called a diagonalizing matrix of A, and A is diagonalizable.

Theorem ($\S3.3$ Theorem 4 & 5 & 6)

Let A be an $n \times n$ matrix.

 A is diagonalizable if and only if it has eigenvectors x₁, x₂,..., x_n so that

$$P = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{bmatrix}$$

is invertible. This occurs precisely when the total number of basic eigenvectors equals n.

$$P^{-1}AP = \operatorname{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$$

where λ_i is the eigenvalue of A corresponding to the eigenvector \mathbf{x}_i , i.e., $A\mathbf{x}_i = \lambda_i \mathbf{x}_i$.

If all of the eigenvalues of A are distinct then A is diagonalizable.

•

Example

$$A = \begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix} \text{ has eigenvalues and basic eigenvectors}$$
$$\lambda_1 = 3 \text{ and } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}; \lambda_2 = 2 \text{ and } \mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}; \lambda_3 = 1 \text{ and } \mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Diagonalize A.

Example

$$A = \begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$
 has eigenvalues and basic eigenvectors
$$\lambda_1 = 3 \text{ and } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \lambda_2 = 2 \text{ and } \mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}; \lambda_2 = 1 \text{ and } \mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\lambda_1 = 3 \text{ and } \mathbf{x}_1 = \begin{bmatrix} 1\\1\\2 \end{bmatrix}; \lambda_2 = 2 \text{ and } \mathbf{x}_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}; \lambda_3 = 1 \text{ and } \mathbf{x}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

Diagonalize A.

Let
$$P = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$
. By Theorem 4 and 5,

$$P^{-1}AP = ext{diag}(3,2,1) = egin{bmatrix} 3 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

.

Note. It is not always possible to find n eigenvectors so that P is invertible.

Example Let $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1 \end{bmatrix}$. Is A diagonalizable?

Note. It is not always possible to find n eigenvectors so that P is invertible.

Example

Let
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1 \end{bmatrix}$$
. Is A diagonalizable?
Then

$$c_{\mathcal{A}}(x) = egin{bmatrix} x-1 & 2 & -3 \ -2 & x-6 & 6 \ -1 & -2 & x+1 \end{bmatrix} = \cdots = (x-2)^3.$$

A has only one eigenvalue, $\lambda_1 = 2$, with multiplicity three.

To find the 2-eigenvectors of A, solve the system $(2I - A)\mathbf{x} = 0$.

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ -2 & -4 & 6 & 0 \\ -1 & -2 & 3 & 0 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The general solution in parametric form is

$$\mathbf{x} = \begin{bmatrix} -2s + 3t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, s, t \in \mathbb{R}.$$

Since the system has only two basic solutions, there are only two basic eigenvectors, implying that the matrix A is not diagonalizable.

Example

Diagonalize, if possible, the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$.

Example

Diagonalize, if possible, the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$.

$$c_A(x) = \det(xI - A) = \begin{vmatrix} x - 1 & 0 & -1 \\ 0 & x - 1 & 0 \\ 0 & 0 & x + 3 \end{vmatrix} = (x - 1)^2 (x + 3).$$

A has eigenvalues $\lambda_1=1$ of multiplicity two; $\lambda_2=-3$ of multiplicity one.

Eigenvectors for
$$\lambda_1 = 1$$
: solve $(I - A)\mathbf{x} = 0$.

$$\begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Eigenvectors for
$$\lambda_2 = -3$$
: solve $(-3I - A)\mathbf{x} = 0$.

$$\begin{bmatrix} -4 & 0 & -1 & | & 0 \\ 0 & -4 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & \frac{1}{4} & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Let

$$\mathsf{P} = egin{bmatrix} -1 & 1 & 0 \ 0 & 0 & 1 \ 4 & 0 & 0 \end{bmatrix}.$$

Then P is invertible, and

$$P^{-1}AP = diag(-3, 1, 1) = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Example

Show that
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is not diagonalizable.

Example

Show that
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is not diagonalizable.
First,

$$c_A(x) = \begin{vmatrix} x-1 & -1 & 0 \\ 0 & x-1 & 0 \\ 0 & 0 & x-2 \end{vmatrix} = (x-1)^2(x-2),$$

so A has eigenvalues $\lambda_1 = 1$ of multiplicity two; $\lambda_2 = 2$ (of multiplicity one).

Eigenvectors for $\lambda_1 = 1$: solve $(I - A)\mathbf{x} = 0$. $\begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Therefore, $\mathbf{x} = \begin{bmatrix} s \\ 0 \\ 0 \end{bmatrix}$, $s \in \mathbb{R}$. Since $\lambda_1 = 1$ has multiplicity two, but has only one basic eigenvector, A is not diagonalizable.

Geometric Interpretation

2 Diagonalization