Linear Methods (Math 211) Lecture 22 - §3.2

(with slides adapted from K. Seyffarth)

David Roe

November 1, 2013

Recall

(1) Elementary Row Operations
(2) Triangular Matrices
(3) Multiplying by scalars
(9) Block Matrices
(5) More examples

Today

(1) Products, inverses and transpose
(2) Adjugates

Theorem (§3.2 Theorem 1 - Product Theorem)

If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B
$$

Theorem (§3.2 Theorem 2)

An $n \times n$ matrix A is invertible if and only if $\operatorname{det} A \neq 0$. In this case,

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A}
$$

Example

Find all values of c for which $A=\left[\begin{array}{rrr}c & 1 & 0 \\ 0 & 2 & c \\ -1 & c & 5\end{array}\right]$ is invertible.

Example

Find all values of c for which $A=\left[\begin{array}{rrr}c & 1 & 0 \\ 0 & 2 & c \\ -1 & c & 5\end{array}\right]$ is invertible.

$$
\begin{aligned}
\operatorname{det} A & =\left|\begin{array}{rrr}
c & 1 & 0 \\
0 & 2 & c \\
-1 & c & 5
\end{array}\right|=c\left|\begin{array}{ll}
2 & c \\
c & 5
\end{array}\right|+(-1)\left|\begin{array}{ll}
1 & 0 \\
2 & c
\end{array}\right| \\
& =c\left(10-c^{2}\right)-c=c\left(9-c^{2}\right)=c(3-c)(3+c)
\end{aligned}
$$

Therefore, A is invertible for all $c \neq 0,3,-3$.

Theorem (§3.2 Theorem 3)
 If A is an $n \times n$ matrix, then $\operatorname{det}\left(A^{T}\right)=\operatorname{det} A$.

Example

Suppose A is a 3×3 matrix. Find $\operatorname{det} A$ and $\operatorname{det} B$ if

$$
\operatorname{det}\left(2 A^{-1}\right)=-4=\operatorname{det}\left(A^{3}\left(B^{-1}\right)^{T}\right)
$$

Example

Suppose A is a 3×3 matrix. Find $\operatorname{det} A$ and $\operatorname{det} B$ if

$$
\operatorname{det}\left(2 A^{-1}\right)=-4=\operatorname{det}\left(A^{3}\left(B^{-1}\right)^{T}\right)
$$

First,

$$
\begin{aligned}
\operatorname{det}\left(2 A^{-1}\right) & =-4 \\
2^{3} \operatorname{det}\left(A^{-1}\right) & =-4 \\
\frac{1}{\operatorname{det} A} & =\frac{-4}{8}=-\frac{1}{2}
\end{aligned}
$$

Therefore, $\operatorname{det} A=-2$.

Example (continued)

Now,

$$
\begin{aligned}
\operatorname{det}\left(A^{3}\left(B^{-1}\right)^{T}\right) & =-4 \\
(\operatorname{det} A)^{3} \operatorname{det}\left(B^{-1}\right) & =-4 \\
(-2)^{3} \operatorname{det}\left(B^{-1}\right) & =-4 \\
(-8) \operatorname{det}\left(B^{-1}\right) & =-4 \\
\frac{1}{\operatorname{det} B} & =\frac{-4}{-8}=\frac{1}{2}
\end{aligned}
$$

Therefore, $\operatorname{det} B=2$.

Example

Suppose A, B and C are 4×4 matrices with

$$
\operatorname{det} A=-1, \operatorname{det} B=2, \text { and } \operatorname{det} C=1 .
$$

Find $\operatorname{det}\left(2 A^{2}\left(B^{-1}\right)\left(C^{T}\right)^{3} B\left(A^{-1}\right)\right)$.

Example

Suppose A, B and C are 4×4 matrices with

$$
\operatorname{det} A=-1, \operatorname{det} B=2, \text { and } \operatorname{det} C=1 .
$$

Find $\operatorname{det}\left(2 A^{2}\left(B^{-1}\right)\left(C^{T}\right)^{3} B\left(A^{-1}\right)\right)$.

$$
\begin{aligned}
\operatorname{det}\left(2 A^{2}\left(B^{-1}\right)\left(C^{T}\right)^{3} B\right. & \left.B\left(A^{-1}\right)\right) \\
& =2^{4}(\operatorname{det} A)^{2} \frac{1}{\operatorname{det} B}(\operatorname{det} C)^{3}(\operatorname{det} B) \frac{1}{\operatorname{det} A} \\
& =16(\operatorname{det} A)(\operatorname{det} C)^{3} \\
& =16 \times(-1) \times 1^{3} \\
& =-16 .
\end{aligned}
$$

Example (§3.2 Example 5)

A square matrix A is orthogonal if and only if $A^{T}=A^{-1}$. What are the possible values of $\operatorname{det} A$ if A is orthogonal?

Example (§3.2 Example 5)

A square matrix A is orthogonal if and only if $A^{T}=A^{-1}$. What are the possible values of $\operatorname{det} A$ if A is orthogonal?

Since $A^{T}=A^{-1}$,

$$
\begin{aligned}
\operatorname{det} A^{T} & =\operatorname{det}\left(A^{-1}\right) \\
\operatorname{det} A & =\frac{1}{\operatorname{det} A} \\
(\operatorname{det} A)^{2} & =1
\end{aligned}
$$

Thus $\operatorname{det} A= \pm 1$, i.e., $\operatorname{det} A=1$ or $\operatorname{det} A=-1$.

Adjugates

For a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, we have already seen the adjugate of A defined as

$$
\operatorname{adj} A=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

and observed that

$$
\begin{aligned}
A(\operatorname{adj} A) & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& =\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right] \\
& =(\operatorname{det} A) I_{2}
\end{aligned}
$$

Furthermore, if $\operatorname{det} A \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A .
$$

Adjugates

Recall the cofactor $c_{i j}(A)=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$.

Definition

If A is an $n \times n$ matrix, then

$$
\operatorname{adj} A=\left[c_{i j}(A)\right]^{T},
$$

where $c_{i j}(A)$ is the (i, j)-cofactor of A, i.e., $\operatorname{adj} A$ is the transpose of the cofactor matrix (matrix of cofactors).

Example

Find $\operatorname{adj} A$ when $A=\left[\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right]$.

Example

Find $\operatorname{adj} A$ when $A=\left[\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right]$.
Solution.

$$
\operatorname{adj} A=\left[\begin{array}{rrr}
42 & 6 & 22 \\
33 & -21 & 13 \\
21 & 3 & -19
\end{array}\right]
$$

Notice that

$$
\begin{aligned}
A(\operatorname{adj} A) & =\left[\begin{array}{rrr}
2 & 1 & 3 \\
5 & -7 & 1 \\
3 & 0 & -6
\end{array}\right]\left[\begin{array}{rrr}
42 & 6 & 22 \\
33 & -21 & 13 \\
21 & 3 & -19
\end{array}\right] \\
& =\left[\begin{array}{ccc}
180 & 0 & 0 \\
0 & 180 & 0 \\
0 & 0 & 180
\end{array}\right]
\end{aligned}
$$

Example (continued)

Also,

$$
\begin{aligned}
\operatorname{det} A & =\left|\begin{array}{rrr}
2 & 1 & 3 \\
5 & -7 & 1 \\
3 & 0 & -6
\end{array}\right| \\
& =\left|\begin{array}{rrr}
2 & 1 & 3 \\
19 & 0 & 22 \\
3 & 0 & -6
\end{array}\right| \\
& =(-1)\left|\begin{array}{rr}
19 & 22 \\
3 & -6
\end{array}\right| \\
& =180,
\end{aligned}
$$

so in this example, we see that

$$
A(\operatorname{adj} A)=(\operatorname{det} A) I
$$

The Adjugate Formula

Theorem ($\S 3.2$ Theorem 4)

If A is an $n \times n$ matrix, then

$$
A(\operatorname{adj} A)=(\operatorname{det} A) I=(\operatorname{adj} A) A .
$$

Furthermore, if $\operatorname{det} A \neq 0$, then

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A .
$$

Note. Except in the case of a 2×2 matrix, the adjugate formula is a very inefficient method for computing the inverse of a matrix; the matrix inversion algorithm is much more practical. However, the adjugate formula is of theoretical significance.

Example (§3.2 Example 8)

For an $n \times n$ matrix A, show that $\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}$.

Example (§3.2 Example 8)

For an $n \times n$ matrix A, show that $\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}$.
Using the adjugate formula,

$$
\begin{aligned}
A(\operatorname{adj} A) & =(\operatorname{det} A) I \\
\operatorname{det}(A(\operatorname{adj} A)) & =\operatorname{det}((\operatorname{det} A) I) \\
(\operatorname{det} A) \times \operatorname{det}(\operatorname{adj} A) & =(\operatorname{det} A)^{n}(\operatorname{det} I) \\
(\operatorname{det} A) \times \operatorname{det}(\operatorname{adj} A) & =(\operatorname{det} A)^{n}
\end{aligned}
$$

If $\operatorname{det} A \neq 0$, then divide both sides of the last equation by $\operatorname{det} A$:

$$
\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}
$$

Example (continued)

In the case that $\operatorname{det} A=0$, I claim the adjugate is not invertible (and thus $\operatorname{det}(\operatorname{adj} A)=0)$.

Why? If $\operatorname{adj} A$ were invertible then multiplying

$$
A(\operatorname{adj} A)=0
$$

by its inverse would give $A=0$. But then $\operatorname{adj} A=0$ and thus not invertible.

Summary

(1) Products, inverses and transpose
(2) Adjugates

