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§4.3 – More on the Cross Product
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Let ~u =

 x0
y0
z0

, ~v =

 x1
y1
z1

, and ~w =

 x2
y2
z2

.

Then

~u • (~v × ~w) =

 x0
y0
z0

 •
 y1z2 − z1y2
−(x1z2 − z1x2)
x1y2 − y1x2


= x0(y1z2 − z1y2)− y0(x1z2 − z1x2) + z0(x1y2 − y1x2)

= x0

∣∣∣∣ y1 y2
z1 z2

∣∣∣∣− y0

∣∣∣∣ x1 x2
z1 z2

∣∣∣∣+ z0

∣∣∣∣ x1 x2
y1 y2

∣∣∣∣
=

∣∣∣∣∣∣
x0 x1 x2
y0 y1 y2
z0 z1 z2

∣∣∣∣∣∣ .
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Theorem (§4.3 Theorem 1)

If ~u =

 x0
y0
z0

, ~v =

 x1
y1
z1

, and ~w =

 x2
y2
z2

. Then

~u • (~v × ~w) = det

 x0 x1 x2
y0 y1 y2
z0 z1 z2

 .

Shorthand: ~u • (~v × ~w) = det
[
~u ~v ~w

]
.
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Properties of the Cross Product

Theorem (§4.3 Theorem 2)

Let ~u, ~v and ~w be in R3.

1 ~u × ~v is a vector.

2 ~u × ~v is orthogonal to both ~u and ~v.

3 ~u ×~0 = ~0 and ~0× ~u = ~0.

4 ~u × ~u = ~0.

5 ~u × ~v = −(~v × ~u).

6 (k~u)× ~v = k(~u × ~v) = ~u × (k~v) for any scalar k.

7 ~u × (~v + ~w) = ~u × ~v + ~u × ~w.

8 (~v + ~w)× ~u = ~v × ~u + ~w × ~u.
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The Lagrange Identity

Theorem (§4.3 Theorem 3)

If ~u, ~v ∈ R3, then

||~u × ~v ||2 = ||~u||2||~v ||2 − (~u • ~v)2.

Proof.

Write ~u =

 x1
y1
z1

 and ~v =

 x2
y2
z2

, and work out all the terms.
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As a consequence of the Lagrange Identity and the fact that

~u • ~v = ||~u|| ||~v || cos θ,

we have

||~u × ~v ||2 = ||~u||2||~v ||2 − (~u • ~v)2

= ||~u||2||~v ||2 − ||~u||2||~v ||2 cos2 θ

= ||~u||2||~v ||2(1− cos2 θ)

= ||~u||2||~v ||2 sin2 θ.

Taking square roots on both sides yields,

||~u × ~v || = ||~u|| ||~v || sin θ.

Note that since 0 ≤ θ ≤ π, sin θ ≥ 0.

If θ = 0 or θ = π, then sin θ = 0, and ||~u × ~v || = 0. This is consistent with our

earlier observation that if ~u and ~v are parallel, then ~u × ~v = ~0.
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Theorem (§4.3 Theorem 4)

Let ~u and ~v be nonzero vectors in R3, and let θ denote the angle between
~u and ~v.

1 ||~u × ~v || = ||~u|| ||~v || sin θ, and is the area of the parallelogram defined
by ~u and ~v.

2 ~u and ~v are parallel if and only if ~u × ~v = ~0.

Proof of area of parallelogram.

The area of the parallelogram defined by ~u and ~v is ||~u||h, where h is the
height of the parallelogram.

~v

~u

θ

h

sin θ = h
||~v || , implying that h = ||~v || sin θ. Therefore, the area is

||~u|| ||~v || sin θ.
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Theorem (§4.3 Theorem 5)

The volume of the parallelepiped determined by the three vectors ~u, ~v,
and ~w in R3 is

|~w • (~u × ~v)|.

Section 4.3 Page 9/11



Example (§4.3 Exercise 4(a))

Find the area of the triangle having vertices A(3,−1, 2), B(1, 1, 0) and
C (1, 2,−1).

Solution. The area of the triangle is half the area of the parallelogram

defined by
−→
AB and

−→
AC .

−→
AB =

 −2
2
−2

 and
−→
AC =

 −2
3
−3

. Therefore

−→
AB ×

−→
AC =

 0
−2
−2

 ,
so the area of the triangle is 1

2 ||
−→
AB ×

−→
AC || =

√
2.
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Example (§4.3 Exercise 5(a))

Find the volume of the parallelepiped determined by the vectors

~u =

 2
1
1

, ~v =

 1
0
2

, and ~w =

 2
1
−1

.

Solution. The volume of the parallelepiped is

|~u • (~v × ~w)| =

∣∣∣∣∣∣det

 2 1 2
1 0 1
1 2 −1

∣∣∣∣∣∣ = 2.
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