

MATH 211 - Fall 2012

Lecture Notes

K. Seyffarth

Section 4.2

$\S4.2$ – Projections and Planes

Definition

Let
$$\vec{u} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ be vectors in \mathbb{R}^3 . The dot product of \vec{u}
and \vec{v} is
 $\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$,
i.e., $\vec{u} \cdot \vec{v}$ is a scalar.

Definition

Let
$$\vec{u} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ be vectors in \mathbb{R}^3 . The dot product of \vec{u}
and \vec{v} is
 $\vec{u} \bullet \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$,
i.e., $\vec{u} \bullet \vec{v}$ is a scalar.

Note. Another way to think about the dot product is as the 1×1 matrix

$$\vec{u}^T \vec{v} = \begin{bmatrix} x_1 & y_1 & z_1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} x_1 x_2 + y_1 y_2 + z_1 z_2 \end{bmatrix}.$$

Theorem ($\S4.2$ Theorem 1)

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^3 (or \mathbb{R}^2) and let $k \in \mathbb{R}$.

Theorem ($\S4.2$ Theorem 1)

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^3 (or \mathbb{R}^2) and let $k \in \mathbb{R}$.

1 $\vec{u} \bullet \vec{v}$ is a real number.

Theorem (§4.2 Theorem 2)

Let \vec{u} and \vec{v} be nonzero vectors, and let θ denote the angle between \vec{u} and $\vec{v}.$ Then

 $\vec{u} \bullet \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos \theta.$

Theorem (§4.2 Theorem 2)

Let \vec{u} and \vec{v} be nonzero vectors, and let θ denote the angle between \vec{u} and $\vec{v}.$ Then

$$\vec{u} \bullet \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos \theta.$$

• This is an intrinsic description of the dot product.

Theorem ($\S4.2$ Theorem 2)

Let \vec{u} and \vec{v} be nonzero vectors, and let θ denote the angle between \vec{u} and $\vec{v}.$ Then

$$\vec{u} \bullet \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos \theta.$$

- This is an intrinsic description of the dot product.
- The proof uses the Law of Cosines, which is a generalization of the **Pythagorean Theorem**.

$$\vec{u} \bullet \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos \theta.$$

$$\vec{u} \bullet \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos \theta.$$

• If $0 \le \theta < \frac{\pi}{2}$, then $\cos \theta > 0$.

$$\vec{u} \bullet \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos \theta.$$

- If $0 \le \theta < \frac{\pi}{2}$, then $\cos \theta > 0$.
- If $\theta = \frac{\pi}{2}$, then $\cos \theta = 0$.

$$\vec{u} \bullet \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos \theta.$$

- If $0 \le \theta < \frac{\pi}{2}$, then $\cos \theta > 0$.
- If $\theta = \frac{\pi}{2}$, then $\cos \theta = 0$.
- If $\frac{\pi}{2} < \theta \leq \pi$, then $\cos \theta < 0$.

$$\vec{u} \bullet \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos \theta.$$

- If $0 \le \theta < \frac{\pi}{2}$, then $\cos \theta > 0$.
- If $\theta = \frac{\pi}{2}$, then $\cos \theta = 0$.
- If $\frac{\pi}{2} < \theta \leq \pi$, then $\cos \theta < 0$.

Therefore, for nonzero vectors \vec{u} and \vec{v} ,

• $\vec{u} \bullet \vec{v} > 0$ if and only if $0 \le \theta < \frac{\pi}{2}$.

$$\vec{u} \bullet \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos \theta.$$

- If $0 \le \theta < \frac{\pi}{2}$, then $\cos \theta > 0$.
- If $\theta = \frac{\pi}{2}$, then $\cos \theta = 0$.
- If $\frac{\pi}{2} < \theta \leq \pi$, then $\cos \theta < 0$.

Therefore, for nonzero vectors \vec{u} and \vec{v} ,

• $\vec{u} \bullet \vec{v} > 0$ if and only if $0 \le \theta < \frac{\pi}{2}$.

•
$$\vec{u} \bullet \vec{v} = 0$$
 if and only if $\theta = \frac{\pi}{2}$.

$$\vec{u} \bullet \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos \theta.$$

- If $0 \le \theta < \frac{\pi}{2}$, then $\cos \theta > 0$.
- If $\theta = \frac{\pi}{2}$, then $\cos \theta = 0$.
- If $\frac{\pi}{2} < \theta \leq \pi$, then $\cos \theta < 0$.

Therefore, for nonzero vectors \vec{u} and \vec{v} ,

- $\vec{u} \bullet \vec{v} > 0$ if and only if $0 \le \theta < \frac{\pi}{2}$.
- $\vec{u} \bullet \vec{v} = 0$ if and only if $\theta = \frac{\pi}{2}$.
- $\vec{u} \bullet \vec{v} < 0$ if and only if $\frac{\pi}{2} < \theta \leq \pi$.

Definition

Vectors \vec{u} and \vec{v} are orthogonal if and only if $\vec{u} = \vec{0}$ or $\vec{v} = \vec{0}$ or $\theta = \frac{\pi}{2}$.

Definition

Vectors \vec{u} and \vec{v} are orthogonal if and only if $\vec{u} = \vec{0}$ or $\vec{v} = \vec{0}$ or $\theta = \frac{\pi}{2}$.

Theorem ($\S4.2$ Theorem 3)

Vectors \vec{u} and \vec{v} are orthogonal if and only if $\vec{u} \bullet \vec{v} = 0$.

Find the angle between $\vec{u} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

Find the angle between
$$\vec{u} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

Solution.

 $\vec{u} \bullet \vec{v} = 1$, $||\vec{u}|| = \sqrt{2}$ and $||\vec{v}|| = \sqrt{2}$. Therefore, by **Theorem 2**,

$$\cos \theta = rac{ec{u} \bullet ec{v}}{||ec{u}|| \; ||ec{v}||} = rac{1}{\sqrt{2}\sqrt{2}} = rac{1}{2}$$

Since $0 \le \theta \le \pi$, $\theta = \frac{\pi}{3}$.

Therefore, the angle between \vec{u} and \vec{v} is $\frac{\pi}{3}$.

Example Find the angle between $\vec{u} = \begin{bmatrix} 7 \\ -1 \\ 3 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}$.

Find the angle between
$$\vec{u} = \begin{bmatrix} 7 \\ -1 \\ 3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}$.

Solution.

 $\vec{u} \bullet \vec{v} = 0$, and therefore the angle between the vectors is $\frac{\pi}{2}$.

Find all vectors \vec{v} =

г ¬

$$\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 orthogonal to both
 $\vec{u} = \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

Find all vectors
$$\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 orthogonal to both
 $\vec{u} = \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

Solution. There are infinitely many such vectors.

Find all vectors
$$\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 orthogonal to both
 $\vec{u} = \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

Solution. There are infinitely many such vectors. Since \vec{v} is orthogonal to both \vec{u} and \vec{w} ,

$$\vec{v} \bullet \vec{u} = -x - 3y + 2z = 0$$

$$\vec{v} \bullet \vec{w} = y + z = 0$$

This is a homogeneous system of two linear equation in three variables.

$$\begin{bmatrix} -1 & -3 & 2 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & -5 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix}$$

Example (continued)

$$\begin{bmatrix} 1 & 0 & -5 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \text{ implies that } \vec{v} = \begin{bmatrix} 5t \\ -t \\ t \end{bmatrix} \text{ for } t \in \mathbb{R}.$$

Therefore, $\vec{v} = t \begin{bmatrix} 5 \\ -1 \\ 1 \end{bmatrix} \text{ for all } t \in \mathbb{R}.$

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle?

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle? Solution.

$$\overrightarrow{AB} = \begin{bmatrix} 2\\11\\-5 \end{bmatrix}, \overrightarrow{AC} = \begin{bmatrix} 3\\17\\-15 \end{bmatrix}, \overrightarrow{BC} = \begin{bmatrix} 1\\6\\-10 \end{bmatrix}$$

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle? Solution.

$$\overrightarrow{AB} = \begin{bmatrix} 2\\11\\-5 \end{bmatrix}, \overrightarrow{AC} = \begin{bmatrix} 3\\17\\-15 \end{bmatrix}, \overrightarrow{BC} = \begin{bmatrix} 1\\6\\-10 \end{bmatrix}$$

•
$$\overrightarrow{AB} \bullet \overrightarrow{AC} = 6 + 187 + 75 \neq 0.$$

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle? Solution.

$$\overrightarrow{AB} = \begin{bmatrix} 2\\11\\-5 \end{bmatrix}, \overrightarrow{AC} = \begin{bmatrix} 3\\17\\-15 \end{bmatrix}, \overrightarrow{BC} = \begin{bmatrix} 1\\6\\-10 \end{bmatrix}$$

•
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 6 + 187 + 75 \neq 0.$$

• $\overrightarrow{BA} \cdot \overrightarrow{BC} = (-\overrightarrow{AB}) \cdot \overrightarrow{BC} = -2 - 66 - 50 \neq 0.$
Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle? Solution.

$$\overrightarrow{AB} = \begin{bmatrix} 2\\11\\-5 \end{bmatrix}, \overrightarrow{AC} = \begin{bmatrix} 3\\17\\-15 \end{bmatrix}, \overrightarrow{BC} = \begin{bmatrix} 1\\6\\-10 \end{bmatrix}$$

•
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 6 + 187 + 75 \neq 0.$$

• $\overrightarrow{BA} \cdot \overrightarrow{BC} = (-\overrightarrow{AB}) \cdot \overrightarrow{BC} = -2 - 66 - 50 \neq 0.$
• $\overrightarrow{CA} \cdot \overrightarrow{CB} = (-\overrightarrow{AC}) \cdot (-\overrightarrow{BC}) = \overrightarrow{AC} \cdot \overrightarrow{BC} = 3 + 102 + 150 \neq 0.$

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle? Solution.

$$\overrightarrow{AB} = \begin{bmatrix} 2\\11\\-5 \end{bmatrix}, \overrightarrow{AC} = \begin{bmatrix} 3\\17\\-15 \end{bmatrix}, \overrightarrow{BC} = \begin{bmatrix} 1\\6\\-10 \end{bmatrix}$$

•
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 6 + 187 + 75 \neq 0.$$

• $\overrightarrow{BA} \cdot \overrightarrow{BC} = (-\overrightarrow{AB}) \cdot \overrightarrow{BC} = -2 - 66 - 50 \neq 0.$
• $\overrightarrow{CA} \cdot \overrightarrow{CB} = (-\overrightarrow{AC}) \cdot (-\overrightarrow{BC}) = \overrightarrow{AC} \cdot \overrightarrow{BC} = 3 + 102 + 150 \neq 0.$

None of the angles is $\frac{\pi}{2}$, and therefore the triangle is not a right angle triangle.

Work through §4.2 Example 4 yourselves.

Example (§4.2 Example 5)

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular.

Example (§4.2 Example 5)

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular. **Solution.**

Define the parallelogram (rhombus) by vectors \vec{u} and \vec{v} .

Then the diagonals are $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$.

Show that $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ are perpendicular.

Example (§4.2 Example 5)

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular. **Solution.**

Define the parallelogram (rhombus) by vectors \vec{u} and \vec{v} .

Then the diagonals are $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$.

Show that $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ are perpendicular.

$$(\vec{u} + \vec{v}) \bullet (\vec{u} - \vec{v}) = \vec{u} \bullet \vec{u} - \vec{u} \bullet \vec{v} + \vec{v} \bullet \vec{u} - \vec{v} \bullet \vec{v} = ||\vec{u}||^2 - \vec{u} \bullet \vec{v} + \vec{u} \bullet \vec{v} - ||\vec{v}||^2 = ||\vec{u}||^2 - ||\vec{v}||^2 = 0, \text{ since } ||\vec{u}|| = ||\vec{v}||.$$

Therefore, the diagonals are perpendicular.

Given nonzero vectors \vec{u} and \vec{d} , express \vec{u} as a sum $\vec{u} = \vec{u_1} + \vec{u_2}$, where $\vec{u_1}$ is parallel to \vec{d} and $\vec{u_2}$ is orthogonal to \vec{d} .

Given nonzero vectors \vec{u} and \vec{d} , express \vec{u} as a sum $\vec{u} = \vec{u}_1 + \vec{u}_2$, where \vec{u}_1 is parallel to \vec{d} and \vec{u}_2 is orthogonal to \vec{d} .

 $\vec{u_1}$ is the projection of \vec{u} onto \vec{d} , written $\vec{u_1} = \text{proj}_{\vec{d}}\vec{u}$.

Given nonzero vectors \vec{u} and \vec{d} , express \vec{u} as a sum $\vec{u} = \vec{u}_1 + \vec{u}_2$, where \vec{u}_1 is parallel to \vec{d} and \vec{u}_2 is orthogonal to \vec{d} .

 $\vec{u_1}$ is the projection of \vec{u} onto \vec{d} , written $\vec{u_1} = \text{proj}_{\vec{d}}\vec{u}$. Since $\vec{u_1}$ is parallel to \vec{d} , $\vec{u_1} = t\vec{d}$ for some $t \in \mathbb{R}$.

Given nonzero vectors \vec{u} and \vec{d} , express \vec{u} as a sum $\vec{u} = \vec{u}_1 + \vec{u}_2$, where \vec{u}_1 is parallel to \vec{d} and \vec{u}_2 is orthogonal to \vec{d} .

 $\vec{u_1}$ is the projection of \vec{u} onto \vec{d} , written $\vec{u_1} = \text{proj}_{\vec{d}}\vec{u}$. Since $\vec{u_1}$ is parallel to \vec{d} , $\vec{u_1} = t\vec{d}$ for some $t \in \mathbb{R}$. Furthermore, $\vec{u_2} = \vec{u} - \vec{u_1}$, so:

$$0 = \vec{u}_2 \bullet \vec{d} = (\vec{u} - \vec{u_1}) \bullet \vec{d} = (\vec{u} - t\vec{d}) \bullet \vec{d} = \vec{u} \bullet \vec{d} - t(\vec{d} \bullet \vec{d})$$

Given nonzero vectors \vec{u} and \vec{d} , express \vec{u} as a sum $\vec{u} = \vec{u_1} + \vec{u_2}$, where $\vec{u_1}$ is parallel to \vec{d} and $\vec{u_2}$ is orthogonal to \vec{d} .

 $\vec{u_1}$ is the projection of \vec{u} onto \vec{d} , written $\vec{u_1} = \text{proj}_{\vec{d}}\vec{u}$. Since $\vec{u_1}$ is parallel to \vec{d} , $\vec{u_1} = t\vec{d}$ for some $t \in \mathbb{R}$. Furthermore, $\vec{u_2} = \vec{u} - \vec{u_1}$, so:

$$0 = \vec{u}_2 \bullet \vec{d} = (\vec{u} - \vec{u}_1) \bullet \vec{d} = (\vec{u} - t\vec{d}) \bullet \vec{d} = \vec{u} \bullet \vec{d} - t(\vec{d} \bullet \vec{d})$$

Hence since $\vec{d} \neq \vec{0}$, we get $t = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^2}$,

Given nonzero vectors \vec{u} and \vec{d} , express \vec{u} as a sum $\vec{u} = \vec{u_1} + \vec{u_2}$, where $\vec{u_1}$ is parallel to \vec{d} and $\vec{u_2}$ is orthogonal to \vec{d} .

 $\vec{u_1}$ is the projection of \vec{u} onto \vec{d} , written $\vec{u_1} = \text{proj}_{\vec{d}}\vec{u}$. Since $\vec{u_1}$ is parallel to \vec{d} , $\vec{u_1} = t\vec{d}$ for some $t \in \mathbb{R}$. Furthermore, $\vec{u_2} = \vec{u} - \vec{u_1}$, so:

$$0 = \vec{u}_2 \bullet \vec{d} = (\vec{u} - \vec{u}_1) \bullet \vec{d} = (\vec{u} - t\vec{d}) \bullet \vec{d} = \vec{u} \bullet \vec{d} - t(\vec{d} \bullet \vec{d})$$

Hence since $\vec{d} \neq \vec{0}$, we get $t = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^2}$, and therefore

$$\vec{u}_1 = \left(\frac{\vec{u} \bullet \vec{d}}{||\vec{d}||^2}\right) \vec{d}.$$

Theorem (§4.2 Theorem 4)

Let \vec{u} and \vec{d} be vectors with $\vec{d} \neq \vec{0}$.

Theorem (§4.2 Theorem 4) Let \vec{u} and \vec{d} be vectors with $\vec{d} \neq \vec{0}$. $proj_{\vec{d}}\vec{u} = \left(\frac{\vec{u} \bullet \vec{d}}{||\vec{d}||^2}\right)\vec{d}$.

Theorem ($\S4.2$ Theorem 4) Let \vec{u} and \vec{d} be vectors with $\vec{d} \neq \vec{0}$. 1 $proj_{\vec{d}}\vec{u} = \left(\frac{\vec{u} \bullet \vec{d}}{||\vec{d}||^2}\right)\vec{d}.$ 2 $\vec{u} - \left(\frac{\vec{u} \bullet \vec{d}}{||\vec{d}||^2}\right) \vec{d}$

is orthogonal to \vec{d} .

Let
$$\vec{u} = \begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 3\\ 1\\ -1 \end{bmatrix}$. Find vectors $\vec{u_1}$ and $\vec{u_2}$ so that $\vec{u} = \vec{u_1} + \vec{u_2}$, with $\vec{u_1}$ parallel to \vec{v} and $\vec{u_2}$ orthogonal to \vec{v} .

Let $\vec{u} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$. Find vectors $\vec{u_1}$ and $\vec{u_2}$ so that $\vec{u} = \vec{u_1} + \vec{u_2}$, with $\vec{u_1}$ parallel to \vec{v} and $\vec{u_2}$ orthogonal to \vec{v} . Solution.

$$\vec{u}_1 = \operatorname{proj}_{\vec{v}} \vec{u} = \begin{pmatrix} \vec{u} \bullet \vec{v} \\ ||\vec{v}||^2 \end{pmatrix} \vec{v} = \frac{5}{11} \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 15/11 \\ 5/11 \\ -5/11 \end{bmatrix}.$$

Let $\vec{u} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$. Find vectors $\vec{u_1}$ and $\vec{u_2}$ so that $\vec{u} = \vec{u_1} + \vec{u_2}$, with $\vec{u_1}$ parallel to \vec{v} and $\vec{u_2}$ orthogonal to \vec{v} . Solution.

$$\vec{u}_1 = \operatorname{proj}_{\vec{v}} \vec{u} = \left(\frac{\vec{u} \bullet \vec{v}}{||\vec{v}||^2}\right) \vec{v} = \frac{5}{11} \begin{bmatrix} 3\\1\\-1 \end{bmatrix} = \begin{bmatrix} 15/11\\5/11\\-5/11 \end{bmatrix}.$$

$$\vec{u}_2 = \vec{u} - \vec{u}_1 = \begin{bmatrix} 2\\-1\\0 \end{bmatrix} - \frac{5}{11} \begin{bmatrix} 3\\1\\-1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 7\\-16\\5 \end{bmatrix} = \begin{bmatrix} 7/11\\-16/11\\5/11 \end{bmatrix}$$

Distance from a Point to a Line

Example

Let P(3,2,-1) be a point in \mathbb{R}^3 and L a line with equation

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}.$$

Find the shortest distance from P to L, and find the point Q on L that is closest to P.

Distance from a Point to a Line

Example

Let P(3,2,-1) be a point in \mathbb{R}^3 and L a line with equation

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}.$$

Find the shortest distance from P to L, and find the point Q on L that is closest to P.

Solution.

Let $P_0 = P_0(2, 1, 3)$ be a point on L, and let $\vec{d} = \begin{bmatrix} 3 & -1 & -2 \end{bmatrix}^T$. Then $\vec{P}_0 \vec{Q} = \text{proj}_{\vec{d}} \vec{P}_0 \vec{P}$, $\vec{0} \vec{Q} = \vec{0} \vec{P}_0 + \vec{P}_0 \vec{Q}$, and the shortest distance from P to L is the length of \vec{QP} , where $\vec{QP} = \vec{P}_0 \vec{P} - \vec{P}_0 \vec{Q}$.

$$\overrightarrow{P_0P} = \begin{bmatrix} 1 & 1 & -4 \end{bmatrix}^T, \ \vec{d} = \begin{bmatrix} 3 & -1 & -2 \end{bmatrix}^T.$$
$$\overrightarrow{P_0Q} = \operatorname{proj}_{\vec{d}} \overrightarrow{P_0P} = \left(\frac{\overrightarrow{P_0P} \bullet \vec{d}}{||\vec{d}||^2}\right) \vec{d} = \frac{10}{14} \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 15 \\ -5 \\ -10 \end{bmatrix}$$

$$\overrightarrow{P_0P} = \begin{bmatrix} 1 & 1 & -4 \end{bmatrix}^T, \ \vec{d} = \begin{bmatrix} 3 & -1 & -2 \end{bmatrix}^T.$$
$$\overrightarrow{P_0Q} = \operatorname{proj}_{\vec{d}} \overrightarrow{P_0P} = \left(\frac{\overrightarrow{P_0P} \bullet \vec{d}}{||\vec{d}||^2}\right) \vec{d} = \frac{10}{14} \begin{bmatrix} 3\\ -1\\ -2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 15\\ -5\\ -10 \end{bmatrix}$$

Therefore,

$$\overrightarrow{0Q} = \begin{bmatrix} 2\\1\\3 \end{bmatrix} + \frac{1}{7} \begin{bmatrix} 15\\-5\\-10 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 29\\2\\11 \end{bmatrix},$$

so $Q = Q\left(\frac{29}{7}, \frac{2}{7}, \frac{11}{7}\right).$

Finally, the shortest distance from P(3, 2, -1) to L is the length of \overrightarrow{QP} , where

$$\overrightarrow{QP} = \overrightarrow{P_0P} - \overrightarrow{P_0Q} = \begin{bmatrix} 1\\1\\-4 \end{bmatrix} - \frac{1}{7} \begin{bmatrix} 15\\-5\\-10 \end{bmatrix} = \frac{2}{7} \begin{bmatrix} -4\\6\\-9 \end{bmatrix}$$

Finally, the shortest distance from P(3, 2, -1) to L is the length of \overrightarrow{QP} , where

$$\overrightarrow{QP} = \overrightarrow{P_0P} - \overrightarrow{P_0Q} = \begin{bmatrix} 1\\1\\-4 \end{bmatrix} - \frac{1}{7} \begin{bmatrix} 15\\-5\\-10 \end{bmatrix} = \frac{2}{7} \begin{bmatrix} -4\\6\\-9 \end{bmatrix}$$

Therefore the shortest distance from P to L is

$$||\overrightarrow{QP}|| = \frac{2}{7}\sqrt{(-4)^2 + 6^2 + (-9)^2} = \frac{2}{7}\sqrt{133}.$$

Finally, the shortest distance from P(3, 2, -1) to L is the length of \overrightarrow{QP} , where

$$\overrightarrow{QP} = \overrightarrow{P_0P} - \overrightarrow{P_0Q} = \begin{bmatrix} 1\\1\\-4 \end{bmatrix} - \frac{1}{7} \begin{bmatrix} 15\\-5\\-10 \end{bmatrix} = \frac{2}{7} \begin{bmatrix} -4\\6\\-9 \end{bmatrix}$$

Therefore the shortest distance from P to L is

$$||\overrightarrow{QP}|| = \frac{2}{7}\sqrt{(-4)^2 + 6^2 + (-9)^2} = \frac{2}{7}\sqrt{133}.$$

§4.2 Example 8 is similar.

Given a point P_0 and a nonzero vector \vec{n} , there is a unique plane containing P_0 and orthogonal to \vec{n} .

Definition

A nonzero vector \vec{n} is a normal vector to a plane if and only if $\vec{n} \bullet \vec{v} = 0$ for every vector \vec{v} in the plane.

Given a point P_0 and a nonzero vector \vec{n} , there is a unique plane containing P_0 and orthogonal to \vec{n} .

Definition

A nonzero vector \vec{n} is a normal vector to a plane if and only if $\vec{n} \bullet \vec{v} = 0$ for every vector \vec{v} in the plane.

Consider a plane containing a point P_0 and orthogonal to vector \vec{n} , and let P be an arbitrary point on this plane.

Given a point P_0 and a nonzero vector \vec{n} , there is a unique plane containing P_0 and orthogonal to \vec{n} .

Definition

A nonzero vector \vec{n} is a normal vector to a plane if and only if $\vec{n} \bullet \vec{v} = 0$ for every vector \vec{v} in the plane.

Consider a plane containing a point P_0 and orthogonal to vector \vec{n} , and let P be an arbitrary point on this plane.

Then

$$\vec{n} \bullet \overrightarrow{P_0 P} = 0,$$

Given a point P_0 and a nonzero vector \vec{n} , there is a unique plane containing P_0 and orthogonal to \vec{n} .

Definition

A nonzero vector \vec{n} is a normal vector to a plane if and only if $\vec{n} \bullet \vec{v} = 0$ for every vector \vec{v} in the plane.

Consider a plane containing a point P_0 and orthogonal to vector \vec{n} , and let P be an arbitrary point on this plane.

Then

$$\vec{n} \bullet \overrightarrow{P_0 P} = 0,$$

or, equivalently,

$$\vec{n} \bullet (\overrightarrow{0P} - \overrightarrow{0P_0}) = 0,$$

and is a vector equation of the plane.

$$\vec{n} \bullet (\overrightarrow{0P} - \overrightarrow{0P_0}) = 0$$

can also be written as

$$\vec{n} \bullet \vec{\overrightarrow{OP}} = \vec{n} \bullet \vec{\overrightarrow{OP_0}}.$$

$$\vec{n} \bullet (\overrightarrow{0P} - \overrightarrow{0P_0}) = 0$$

can also be written as

$$\vec{n} \bullet \overrightarrow{0P} = \vec{n} \bullet \overrightarrow{0P_0}$$

Now suppose $P_0 = P_0(x_0, y_0, z_0)$, P = P(x, y, z), and $\vec{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$.

$$\vec{n} \bullet (\overrightarrow{0P} - \overrightarrow{0P_0}) = 0$$

can also be written as

$$\vec{n} \bullet \vec{\overrightarrow{OP}} = \vec{n} \bullet \vec{\overrightarrow{OP_0}}.$$

Now suppose $P_0 = P_0(x_0, y_0, z_0)$, P = P(x, y, z), and $\vec{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$. Then the previous equation becomes

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \bullet \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix},$$

$$\vec{n} \bullet (\overrightarrow{0P} - \overrightarrow{0P_0}) = 0$$

can also be written as

$$\vec{n} \bullet \vec{0P} = \vec{n} \bullet \vec{0P_0}.$$

Now suppose $P_0 = P_0(x_0, y_0, z_0)$, P = P(x, y, z), and $\vec{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$. Then the previous equation becomes

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \bullet \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix},$$

SO

$$ax + by + cz = ax_0 + by_0 + cz_0,$$

where $d = ax_0 + by_0 + cz_0$ is simply a scalar.

$$\vec{n} \bullet (\overrightarrow{0P} - \overrightarrow{0P_0}) = 0$$

can also be written as

$$\vec{n} \bullet \overrightarrow{0P} = \vec{n} \bullet \overrightarrow{0P_0}$$

Now suppose $P_0 = P_0(x_0, y_0, z_0)$, P = P(x, y, z), and $\vec{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$. Then the previous equation becomes

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \bullet \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix},$$

SO

$$ax + by + cz = ax_0 + by_0 + cz_0,$$

where $d = ax_0 + by_0 + cz_0$ is simply a scalar. A scalar equation of the plane has the form

$$ax + by + cz = d$$
, where $a, b, c, d \in \mathbb{R}$.

Find an equation of the plane containing $P_0(1, -1, 0)$ and orthogonal to $\vec{n} = \begin{bmatrix} -3 & 5 & 2 \end{bmatrix}^T$.

Find an equation of the plane containing $P_0(1, -1, 0)$ and orthogonal to $\vec{n} = \begin{bmatrix} -3 & 5 & 2 \end{bmatrix}^T$. Solution.

A vector equation of this plane is

$$\begin{bmatrix} -3\\5\\2 \end{bmatrix} \bullet \begin{bmatrix} x-1\\y+1\\z \end{bmatrix} = 0.$$

Find an equation of the plane containing $P_0(1, -1, 0)$ and orthogonal to $\vec{n} = \begin{bmatrix} -3 & 5 & 2 \end{bmatrix}^T$. Solution.

A vector equation of this plane is

$$\begin{bmatrix} -3\\5\\2 \end{bmatrix} \bullet \begin{bmatrix} x-1\\y+1\\z \end{bmatrix} = 0.$$

A scalar equation of this plane is

$$-3x + 5y + 2z = -3(1) + 5(-1) + 2(0) = -8,$$

i.e., the plane has scalar equation

$$-3x + 5y + 2z = -8.$$

Example

Find the shortest distance from the point P(2,3,0) to the plane with equation 5x + y + z = -1, and find the point Q on the plane that is closest to P.

Example

Find the shortest distance from the point P(2,3,0) to the plane with equation 5x + y + z = -1, and find the point Q on the plane that is closest to P.

Solution (like the first solution to §4.2 Example 11).

Pick an arbitrary point P_0 on the plane.

Then
$$\overrightarrow{QP} = \text{proj}_{\vec{n}} \overrightarrow{P_0P}$$
,
 $||\overrightarrow{QP}||$ is the shortest distance,
and $\overrightarrow{0Q} = \overrightarrow{0P} - \overrightarrow{QP}$.

Example

Find the shortest distance from the point P(2,3,0) to the plane with equation 5x + y + z = -1, and find the point Q on the plane that is closest to P.

Solution (like the first solution to §4.2 Example 11).

Pick an arbitrary point P_0 on the plane.

Then
$$\overrightarrow{QP} = \text{proj}_{\vec{n}} \overrightarrow{P_0P}$$
,
 $||\overrightarrow{QP}||$ is the shortest distance,
and $\overrightarrow{0Q} = \overrightarrow{0P} - \overrightarrow{QP}$.

Example

Find the shortest distance from the point P(2,3,0) to the plane with equation 5x + y + z = -1, and find the point Q on the plane that is closest to P.

Solution (like the first solution to §4.2 Example 11).

Example

Find the shortest distance from the point P(2,3,0) to the plane with equation 5x + y + z = -1, and find the point Q on the plane that is closest to P.

Solution (like the first solution to $\S4.2$ Example 11).

$$\overrightarrow{P_0P} = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}^T.$$
$$\overrightarrow{n} = \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^T.$$

Section 4.2

$$\overrightarrow{0Q} = \overrightarrow{0P} - \overrightarrow{QP} = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}^T - \frac{14}{27} \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^T$$
$$= \frac{1}{27} \begin{bmatrix} -16 & 67 & -14 \end{bmatrix}^T.$$

To find Q, we have

$$\overrightarrow{OQ} = \overrightarrow{OP} - \overrightarrow{QP} = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}^T - \frac{14}{27} \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^T$$
$$= \frac{1}{27} \begin{bmatrix} -16 & 67 & -14 \end{bmatrix}^T.$$
$$O = O \begin{pmatrix} -16 & 67 & -14 \end{bmatrix}^T.$$

Therefore $Q = Q\left(-\frac{16}{27}, \frac{67}{27}, -\frac{14}{27}\right)$.

The Cross Product

Definition

Let
$$\vec{u} = \begin{bmatrix} x_1 & y_1 & z_1 \end{bmatrix}^T$$
 and $\vec{v} = \begin{bmatrix} x_2 & y_2 & z_2 \end{bmatrix}^T$. Then
 $\vec{u} \times \vec{v} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$.

The Cross Product

Definition Let $\vec{u} = \begin{bmatrix} x_1 & y_1 & z_1 \end{bmatrix}^T$ and $\vec{v} = \begin{bmatrix} x_2 & y_2 & z_2 \end{bmatrix}^T$. Then $\vec{u} \times \vec{v} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$.

Note. $\vec{u} \times \vec{v}$ is a vector that is orthogonal to both \vec{u} and \vec{v} .

The Cross Product

Definition

Let
$$\vec{u} = \begin{bmatrix} x_1 & y_1 & z_1 \end{bmatrix}^T$$
 and $\vec{v} = \begin{bmatrix} x_2 & y_2 & z_2 \end{bmatrix}^T$. Then
 $\vec{u} \times \vec{v} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$.

Note. $\vec{u} \times \vec{v}$ is a vector that is orthogonal to both \vec{u} and \vec{v} .

A mnemonic device:

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & x_1 & x_2 \\ \vec{j} & y_1 & y_2 \\ \vec{k} & z_1 & z_2 \end{vmatrix}, \text{ where } \vec{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \vec{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

```
Theorem (§4.2 Theorem 5)
Let \vec{u}, \vec{v} \in \mathbb{R}^3.
```



```
Theorem (§4.2 Theorem 5)Let \vec{u}, \vec{v} \in \mathbb{R}^3.Image: Image of the two states of two s
```



```
Theorem (\S4.2 Theorem 5)
```

Let $\vec{u}, \vec{v} \in \mathbb{R}^3$.

- $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} .
- **(2)** If \vec{u} and \vec{v} are both nonzero, then $\vec{u} \times \vec{v} = \vec{0}$ if and only if \vec{u} and \vec{v} are parallel.

Example

Find all vectors orthogonal to both $\vec{u} = \begin{bmatrix} -1 & -3 & 2 \end{bmatrix}^T$ and $\vec{v} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$. (We previously solved this using the dot product.)

Example

Find all vectors orthogonal to both $\vec{u} = \begin{bmatrix} -1 & -3 & 2 \end{bmatrix}^T$ and $\vec{v} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$. (We previously solved this using the dot product.) **Solution.**

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & -1 & 0\\ \vec{j} & -3 & 1\\ \vec{k} & 2 & 1 \end{vmatrix} = -5\vec{i} + \vec{j} - \vec{k} = \begin{bmatrix} -5\\ 1\\ -1 \end{bmatrix}$$

Example

Find all vectors orthogonal to both $\vec{u} = \begin{bmatrix} -1 & -3 & 2 \end{bmatrix}^T$ and $\vec{v} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$. (We previously solved this using the dot product.) Solution.

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & -1 & 0\\ \vec{j} & -3 & 1\\ \vec{k} & 2 & 1 \end{vmatrix} = -5\vec{i} + \vec{j} - \vec{k} = \begin{bmatrix} -5\\ 1\\ -1 \end{bmatrix}$$

Any scalar multiple of $\vec{u} \times \vec{v}$ is also orthogonal to both \vec{u} and \vec{v} , so

$$t\left[egin{array}{c} -5 \ 1 \ -1 \end{array}
ight],t\in\mathbb{R},$$

gives all vectors orthogonal to both \vec{u} and \vec{v} . (Compare this with our earlier answer.) **§4.2 Example 13** shows how to find an equation of a plane that contains three non-colinear points.

§**4.2 Example 14** shows how to find the shortest distance between skew lines, i.e., lines that are not parallel and do not intersect.

Distance between skew lines

Example

Given two lines

$$L_1: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \text{ and } L_2: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix},$$

- A. Find the shortest distance between L_1 and L_2 .
- B. Find the shortest distance between L_1 and L_2 , and find the points P on L_1 and Q on L_2 that are closest together.

Distance between skew lines

Example

Given two lines

$$\mathcal{L}_1: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \text{ and } \mathcal{L}_2: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix},$$

- A. Find the shortest distance between L_1 and L_2 .
- B. Find the shortest distance between L_1 and L_2 , and find the points P on L_1 and Q on L_2 that are closest together.

Solution A.

Choose
$$P_1(3, 1, -1)$$
 on L_1 and $P_2(1, 2, 0)$ on L_2 .
Let $\vec{d}_1 = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ and $\vec{d}_2 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$ denote direction vectors for L_1 and L_2 , respectively.

$$ec{d_1} = \left[egin{array}{c} 1 \\ 1 \\ -1 \end{array}
ight], \ ec{d_2} = \left[egin{array}{c} 1 \\ 0 \\ 2 \end{array}
ight]$$

The shortest distance between L_1 and L_2 is the length of the projection of $\overline{P_1P_2}$ onto $\vec{n} = \vec{d}_1 \times \vec{d}_2$.

<

$$\vec{d}_1 = \left[egin{array}{c} 1 \\ 1 \\ -1 \end{array}
ight], \ \vec{d}_2 = \left[egin{array}{c} 1 \\ 0 \\ 2 \end{array}
ight]$$

Page 30/<u>32</u>

The shortest distance between L_1 and L_2 is the length of the projection of $\overrightarrow{P_1P_2}$ onto $\vec{n} = \vec{d}_1 \times \vec{d}_2$.

$$\overrightarrow{P_1P_2} = \begin{bmatrix} -2\\1\\1 \end{bmatrix} \text{ and } \overrightarrow{n} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \times \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 2\\-3\\-1 \end{bmatrix}$$

$$ec{d_1} = \left[egin{array}{c} 1 \\ 1 \\ -1 \end{array}
ight], \ ec{d_2} = \left[egin{array}{c} 1 \\ 0 \\ 2 \end{array}
ight]$$

The shortest distance between L_1 and L_2 is the length of the projection of $\overrightarrow{P_1P_2}$ onto $\vec{n} = \vec{d}_1 \times \vec{d}_2$.

$$\overrightarrow{P_1P_2} = \begin{bmatrix} -2\\1\\1 \end{bmatrix} \text{ and } \vec{n} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \times \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 2\\-3\\-1 \end{bmatrix}$$
$$\operatorname{proj}_{\vec{n}}\overrightarrow{P_1P_2} = \left(\frac{\overrightarrow{P_1P_2} \bullet \vec{n}}{||\vec{n}||^2} \right) \vec{n}, \text{ and } ||\operatorname{proj}_{\vec{n}}\overrightarrow{P_1P_2}|| = \frac{|\overrightarrow{P_1P_2} \bullet \vec{n}|}{||\vec{n}||}.$$

$$ec{d_1} = \left[egin{array}{c} 1 \\ 1 \\ -1 \end{array}
ight], \ ec{d_2} = \left[egin{array}{c} 1 \\ 0 \\ 2 \end{array}
ight]$$

The shortest distance between L_1 and L_2 is the length of the projection of $\overline{P_1P_2}$ onto $\vec{n} = \vec{d}_1 \times \vec{d}_2$.

$$\overrightarrow{P_1P_2} = \begin{bmatrix} -2\\1\\1 \end{bmatrix} \text{ and } \vec{n} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \times \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 2\\-3\\-1 \end{bmatrix}$$

$$\operatorname{proj}_{\vec{n}}\overrightarrow{P_1P_2} = \left(\frac{\overrightarrow{P_1P_2} \bullet \vec{n}}{||\vec{n}||^2}\right) \vec{n}, \text{ and } ||\operatorname{proj}_{\vec{n}}\overrightarrow{P_1P_2}|| = \frac{|\overrightarrow{P_1P_2} \bullet \vec{n}|}{||\vec{n}||}.$$

Therefore, the shortest distance between L_1 and L_2 is $\frac{|-8|}{\sqrt{14}} = \frac{4}{7}\sqrt{14}$.

Solution B.

$$\vec{d_1} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \ \vec{d_2} = \begin{bmatrix} 1\\0\\2 \end{bmatrix};$$
$$\vec{OP} = \begin{bmatrix} 3+s\\1+s\\-1-s \end{bmatrix} \text{ for some } s \in \mathbb{R},$$
$$\vec{OQ} = \begin{bmatrix} 1+t\\2\\2t \end{bmatrix} \text{ for some } t \in \mathbb{R}.$$

Solution B. $\vec{d_1} = \begin{vmatrix} 1 \\ 1 \\ -1 \end{vmatrix}$, $\vec{d_2} = \begin{vmatrix} 1 \\ 0 \\ 2 \end{vmatrix}$; $P_1(3, 1, -1)$ Ρ $\overrightarrow{OP} = \begin{vmatrix} 3+s \\ 1+s \\ -1-s \end{vmatrix} \text{ for some } s \in \mathbb{R};$ $P_2(1,2,0)$ $\overrightarrow{0Q} = \begin{bmatrix} 1+t\\ 2\\ 2t \end{bmatrix} \text{ for some } t \in \mathbb{R}.$ Now $\overrightarrow{PQ} = \begin{bmatrix} -2-s+t & 1-s & 1+s+2t \end{bmatrix}^T$ is orthogonal to both L_1 and L_2 , so $\overrightarrow{PQ} \bullet \overrightarrow{d_1} = 0$ and $\overrightarrow{PQ} \bullet \overrightarrow{d_2} = 0$. -2 - 3s - t = 0i.e., s + 5t = 0.

Solution B. $\vec{d_1} = \begin{vmatrix} 1 \\ 1 \\ -1 \end{vmatrix}$, $\vec{d_2} = \begin{vmatrix} 1 \\ 0 \\ 2 \end{vmatrix}$; $\tilde{P}_1(3, 1, -1)$ Ρ $\overrightarrow{OP} = \begin{vmatrix} 3+s\\1+s\\1-s\end{vmatrix} \text{ for some } s \in \mathbb{R};$ $P_2(1,2,0)$ Q $\overrightarrow{0Q} = \begin{bmatrix} 1+t\\ 2\\ 2t \end{bmatrix} \text{ for some } t \in \mathbb{R}.$ Now $\overrightarrow{PQ} = \begin{bmatrix} -2-s+t & 1-s & 1+s+2t \end{bmatrix}^T$ is orthogonal to both L_1 and L_2 , so $\overrightarrow{PQ} \bullet \overrightarrow{d_1} = 0$ and $\overrightarrow{PQ} \bullet \overrightarrow{d_2} = 0$. -2 - 3s - t = 0i.e., s + 5t = 0.

This system has unique solution $s = -\frac{5}{7}$ and $t = \frac{1}{7}$.

Solution B. $\vec{d_1} = \begin{vmatrix} 1 \\ 1 \\ -1 \end{vmatrix}$, $\vec{d_2} = \begin{vmatrix} 1 \\ 0 \\ 2 \end{vmatrix}$; $\tilde{P}_{1}(3, 1, -1)$ Ρ $\overrightarrow{OP} = \begin{vmatrix} 3+s\\1+s\\-1-s \end{vmatrix} \text{ for some } s \in \mathbb{R};$ $P_2(1,2,0)$ Q $\overrightarrow{0Q} = \begin{bmatrix} 1+t\\ 2\\ 2t \end{bmatrix} \text{ for some } t \in \mathbb{R}.$ Now $\overrightarrow{PQ} = \begin{bmatrix} -2-s+t & 1-s & 1+s+2t \end{bmatrix}^T$ is orthogonal to both L_1 and L_2 , so $\overrightarrow{PQ} \bullet \overrightarrow{d_1} = 0$ and $\overrightarrow{PQ} \bullet \overrightarrow{d_2} = 0$. -2 - 3s - t = 0i.e., s + 5t = 0.

This system has unique solution $s = -\frac{5}{7}$ and $t = \frac{1}{7}$. Therefore,

$$P = P\left(\frac{16}{7}, \frac{2}{7}, -\frac{2}{7}\right)$$
 and $Q = Q\left(\frac{8}{7}, 2, \frac{2}{7}\right)$.

The shortest distance between L_1 and L_2 is $||\overrightarrow{PQ}||$. Since

$$P = P\left(\frac{16}{7}, \frac{2}{7}, -\frac{2}{7}\right)$$
 and $Q = Q\left(\frac{8}{7}, 2, \frac{2}{7}\right)$

The shortest distance between L_1 and L_2 is $||\overrightarrow{PQ}||$. Since

$$P = P\left(\frac{16}{7}, \frac{2}{7}, -\frac{2}{7}\right) \text{ and } Q = Q\left(\frac{8}{7}, 2, \frac{2}{7}\right),$$
$$\overrightarrow{PQ} = \frac{1}{7}\begin{bmatrix} 8\\14\\2\end{bmatrix} - \frac{1}{7}\begin{bmatrix} 16\\2\\-2\end{bmatrix} = \frac{1}{7}\begin{bmatrix} -8\\12\\4\end{bmatrix},$$

The shortest distance between L_1 and L_2 is $||\overrightarrow{PQ}||$. Since

$$P = P\left(\frac{16}{7}, \frac{2}{7}, -\frac{2}{7}\right) \text{ and } Q = Q\left(\frac{8}{7}, 2, \frac{2}{7}\right),$$
$$\overrightarrow{PQ} = \frac{1}{7}\begin{bmatrix} 8\\14\\2\end{bmatrix} - \frac{1}{7}\begin{bmatrix} 16\\2\\-2\end{bmatrix} = \frac{1}{7}\begin{bmatrix} -8\\12\\4\end{bmatrix},$$

and

$$||\overrightarrow{PQ}|| = \frac{1}{7}\sqrt{224} = \frac{4}{7}\sqrt{14}.$$

The shortest distance between L_1 and L_2 is $||\overrightarrow{PQ}||$. Since

$$P = P\left(\frac{16}{7}, \frac{2}{7}, -\frac{2}{7}\right) \text{ and } Q = Q\left(\frac{8}{7}, 2, \frac{2}{7}\right),$$
$$\overrightarrow{PQ} = \frac{1}{7}\begin{bmatrix} 8\\14\\2\end{bmatrix} - \frac{1}{7}\begin{bmatrix} 16\\2\\-2\end{bmatrix} = \frac{1}{7}\begin{bmatrix} -8\\12\\4\end{bmatrix},$$

and

$$||\overrightarrow{PQ}|| = \frac{1}{7}\sqrt{224} = \frac{4}{7}\sqrt{14}.$$

Therefore the shortest distance between L_1 and L_2 is $\frac{4}{7}\sqrt{14}$.