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§4.2 — Projections and Planes
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Definition

X1 X2
Let ’= | y1 | and V= | y» | be vectors in R3. The dot product of i
7 z

and Vis
UeV=x1x+y1yo + 212,

i.e., eV is a scalar.
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Definition

X1 X2
Let ’= | y1 | and V= | y» | be vectors in R3. The dot product of i
7 2

and V is
UeV=x1x+y1yo + 212,

i.e., eV is a scalar.

Note. Another way to think about the dot product is as the 1 x 1 matrix

X2
V=[x 1 al| vy |=[xetynrntazn].
22

LTT
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Properties of the Dot Product

Theorem (§4.2 Theorem 1)
Let i, V,w be vectors in R (or R?) and let k € R.
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Properties of the Dot Product

Theorem (§4.2 Theorem 1)
Let i, V,w be vectors in R (or R?) and let k € R.

@ eV isa real number.
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Properties of the Dot Product

Theorem (§4.2 Theorem 1)
Let i, V,w be vectors in R (or R?) and let k € R.

Q eV isareal number.
Q TevV=Veld (commutative property)
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Properties of the Dot Product

Theorem (§4.2 Theorem 1)
Let i, V,w be vectors in R (or R?) and let k € R.

Q eV isareal number.
Q TevV=Veld (commutative property)
©Q Je0=0.
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Properties of the Dot Product

Theorem (§4.2 Theorem 1)
Let i, V,w be vectors in R (or R?) and let k € R.

©Q eV isa real number.
Q Hev=Vel.

© 7e0=0.

O deu= |l

(commutative property)
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Properties of the Dot Product

Theorem (§4.2 Theorem 1)

Let ii, V,w be vectors in R3 (or R?) and let k € R.

e

is a real number.

S S g g
[

—~

(commutative property)

(associative property)
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Properties of the Dot Product

Theorem (§4.2 Theorem 1)

—

Let i, V,w be vectors in R (or R?) and let k € R.

Q eV isa real number.

Q TevV=Veld (commutative property)

Q 7e0=0.

Q e i=|d.

Q (ki) eV =k(ueV)= e (kV). (associative property)

Q Ue(V+w)=0deV+idew. (distributive properties)
de(V—w)=0deV—idew
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Let i and V be two vectors in R3 (or R?), positioned so they have the
same tail. Then there is a unique angle 6 between & and vV with 0 < 0 <.

<y
<y
S
<i

<i
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Let i and V be two vectors in R3 (or R?), positioned so they have the
same tail. Then there is a unique angle 6 between & and vV with 0 < 0 <.

<y
>

<y
<t

%
Theorem (§4.2 Theorem 2)

Let i and vV be nonzero vectors, and let 6 denote the angle between & and
V. Then
de v =||d]| ||V]|cos.
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Let i and V be two vectors in R3 (or R?), positioned so they have the
same tail. Then there is a unique angle 6 between & and vV with 0 < 0 <.

<y
>

<y
<t

%
Theorem (§4.2 Theorem 2)

Let i and vV be nonzero vectors, and let 6 denote the angle between & and
V. Then
de v =||d]| ||V]|cos.

@ This is an intrinsic description of the dot product.
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Let i and V be two vectors in R3 (or R?), positioned so they have the
same tail. Then there is a unique angle 6 between & and vV with 0 < 0 <.

<y
>

<y
<t

%
Theorem (§4.2 Theorem 2)

Let i and vV be nonzero vectors, and let 6 denote the angle between & and
V. Then
de v =||d]| ||V]|cosb.

@ This is an intrinsic description of the dot product.

@ The proof uses the Law of Cosines, which is a generalization of the
Pythagorean Theorem.
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dev =[] ||V]|cosé.
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dev =[] ||V]|cosé.

e If0 <0< 7, then cosf > 0.
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dev =[] ||V]|cosé.

e If0 <0< 7, then cosf > 0.
e If 0 = 7, then cos = 0.
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Fe =i ||V]| coso.

e If0 <0< 7, then cosf > 0.
e If 0 = 7, then cos = 0.
e If 7 <6 <, then cosf <O0.
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de v =||d]] ||V]| cosb.

e If0 <0< 7, then cosf > 0.
e If 0 = 7, then cos = 0.
e If 7 <6 <, then cosf <O0.

Therefore, for nonzero vectors & and V,

e fev>0ifandonlyif0<60 < 7.
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de v =||d]] ||V]| cosb.

e If0 <0< 7, then cosf > 0.
e If 0 = 7, then cos = 0.
e If 7 <6 <, then cosf <O0.

Therefore, for nonzero vectors 7 and V,
e fev>0ifandonlyif0<60 < 7.
o fev=0ifand only if = 7.
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de v =||d]] ||V]| cosb.

e If0 <0< 7, then cosf > 0.
e If 0 = 7, then cos = 0.
e If 7 <6 <, then cosf <O0.

Therefore, for nonzero vectors i and V,
e fev>0ifandonlyif0<60 < 7.
o fev=0ifand only if = 7.

° LTo\7<0ifandon|yif§<9§7r.

Section 4.2 Page 6/32



Definition

Vectors 7 and V are orthogonal if and only if 7= 0 or V =

0

or 6

(NIE]
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Definition

Vectors 7 and V are orthogonal if and only if 7= 0 or V=0 or § = 3
Theorem (§4.2 Theorem 3)
Vectors i and v are orthogonal if and only if e vV = 0.

o |
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Example

Find the angle between & =
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Example

1 0
Find the angle between & = 0 | and Vv = 1
-1 -1

Solution.
dev=1,|d]|=+2and ||V|] = V2.
Therefore, by Theorem 2,
vev 1 1

a1l vave 2

cosf =

SinceOSGSw,Gz%.

Therefore, the angle between & and vV is 3.
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Example

Find the angle between 7 =

7
=l
3

and vV =

Section 4.2
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Example

7 1
Find the angle between = | —1 | and vV = 4
3 -1

Solution.
e V=0, and therefore the angle between the vectors is 7.
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Example

X
Find all vectors v = | y | orthogonal to both
z

-1
v=| -3 | and w=
2
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Example

X
Find all vectors v = | y | orthogonal to both
z
-1 0
v=| -3 andw=| 1
2 1

Solution. There are infinitely many such vectors.
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Example

X
Find all vectors v = | y | orthogonal to both
z
-1 0
v=| -3 andw=| 1
2 1

Solution. There are infinitely many such vectors.
Since V is orthogonal to both & and w,

1

= —x—3y+2z=0
= y+z=0

2 <y

<<

This is a homogeneous system of two linear equation in three variables.

-1 -3 200] . _[10 -5]0
0 1 10 01 1/0
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Example (continued)

5t
10 -5|0 (. . S
[0 1 1‘O]lmpllesthatv— —: for t € R.

5
Therefore, V=t | —1 | forall t € R.
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Example
Are A(4,—7,9), B(6,4,4) and C(7,10,—6) the vertices of a right angle
triangle?
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Example
Are A(4,—7,9), B(6,4,4) and C(7,10,—6) the vertices of a right angle

triangle?
Solution.
2 3 1
AB=| 11 |, AC=| 17|.BE=| 6
-5 —15 —10
Page 12/32 |
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Example
Are A(4,—7,9), B(6,4,4) and C(7,10,—6) the vertices of a right angle

triangle?
Solution.
2 3 1
AB=| 11 |, AC=| 17|.BE=| 6
5 15 ~10
o AB e AC = 6+ 187 + 75 £ 0.
Page 12/32 —
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Example
Are A(4,—7,9), B(6,4,4) and C(7,10,—6) the vertices of a right angle

triangle?
Solution.
2 3 1
AB=| 11 |, AC=| 17|.BE=| 6
-5 —15 —10

o ABeAC = 64 187 + 75 # 0.
o BAeBC = (~AB)e BC = —2 — 66 — 50 # 0.
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Example
Are A(4,—7,9), B(6,4,4) and C(7,10,—6) the vertices of a right angle

triangle?
Solution.
2 3 1
AB=| 11 |, AC=| 17|.BE=| 6
-5 —15 —10

= 6+ 187+ 75 £ 0.
(—AB) e BC = —2 — 66— 50 # 0.
(—AC) e (—BC) = AC « BE = 3 + 102 + 150 # 0.

ol gl 3l
3l 2 &l
Il
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Example
Are A(4,—7,9), B(6,4,4) and C(7,10,—6) the vertices of a right angle

triangle?
Solution.
2 3 1
AB=| 11 |, AC=| 17|.BE=| 6
-5 —15 —10

o ABeAC = 64 187 + 75 # 0.
o BAeBC = (—AB)eBC = —2— 66— 50 # 0.
o CAe CB=(—AC)e(~BC)=AC e BC =3+ 102+ 150 # 0.

None of the angles is 7, and therefore the triangle is not a right angle

triangle.

Work through §4.2 Example 4 yourselves.
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Example (§4.2 Example 5)

A rhombus is a parallelogram with sides of equal length. Prove that the
diagonals of a rhombus are perpendicular.
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Example (§4.2 Example 5)
A rhombus is a parallelogram with sides of equal length. Prove that the
diagonals of a rhombus are perpendicular.

Solution. .
Define the parallelogram (rhombus) by

R vectors 7 and V.
]
Then the diagonals are &+ v and 7 — V.

Show that &+ v and & — V are perpendicular.

<u
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Example (§4.2 Example 5)

A rhombus is a parallelogram with sides of equal length. Prove that the
diagonals of a rhombus are perpendicular.

Solution. .
Define the parallelogram (rhombus) by

R vectors 7 and V.
]
Then the diagonals are &+ v and 7 — V.

v Show that &+ v and & — V are perpendicular.
(U+V)e(d—V) = ded—uUevV+vVei—vev
= ||d@)?P—dev+dev—|V|>
2 —12
= [la* =¥l
= 0, since ||d]| = ||V]|.

Therefore, the diagonals are perpendicular.
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Projections
Given nonzero vectors if and d, express if as a sum & = iy + >, where i}

is parallel to d and ii» is orthogonal to d.

<y
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Projections

—

Given nonzero vectors if and d, express if as a sum & = iy + >, where i}
is parallel to d and i is orthogonal to d.

<y

—

d {0

i1 is the projection of & onto d, written 7y = proj sU.
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Projections

Given nonzero vectors if and d, express if as a sum & = iy + >, where i}
is parallel to d and i is orthogonal to d.

<y

- —

d t
i1 is the projection of & onto d, written 7y = proj sU.
Since i is parallel to d, h = td for some t € R.
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Projections

Given nonzero vectors if and d, express if as a sum & = iy + >, where i}
is parallel to d and i is orthogonal to d.

<y

- —

d t
i1 is the projection of i/ onto d, written i = proj sU.
Since i is parallel to d, 7 = td for some t € R.
Furthermore, b = 4 — 7, so:

— -, —

O=hhed=(i—u))ed=(i—td)ed=ided—t(ded)
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Projections

Given nonzero vectors o and d express u as a sum i = i + i», where i
is parallel to d and ii» is orthogonal to d.

<y

- —

d t
i1 is the projection of i/ onto d, written i = proj sU.
Since i is parallel to d, h = td for some t € R.
Furthermore, b = 4 — 7, so:
O=ihed=(G—uj)ed=(i—td)ed=ided—t(ded)
od

Hence since d # 0, we get t = £
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Projections

Given nonzero vectors o and d express u as a sum i = i + i», where i
is parallel to d and o is orthogonal to d.

)
ih
d a0
i1 is the projection of & onto d, written &y = proj sU.
Since i is parallel to d, h = td for some t € R.
Furthermore, b = 4 — 7, so:
O=hhed=(i—u))ed=(i—td)ed=ided—t(ded)
ded

Hence since d #* 0, we get t =

5, and therefore

J
(uod J
||d|[?
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Theorem (§4.2 Theorem 4)

Let i and d be vectors with d # 0.

Section 4.2 Page 15/32



Theorem (§4.2 Theorem 4)

Let i and d be vectors with d # 0.

a —
- ved)\ -
projjui = | —— | d.

(Hd!lz)
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Theorem (§4.2 Theorem 4)

Let i and d be vectors with d # 0.
o

Q

ue

projsui = - d.

<Hd!|2)

. [ ] —

u— < _.2>d
|d]

<y
Q

is orthogonal to d.
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Example

2 3
Llet /=] —1 | and V= 1 |. Find vectors &7 and b so that
0 -1

U= th + tp, with 7 parallel to v and i, orthogonal to V.
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Example

2 3

Llet /=] —1 | and V= 1 |. Find vectors &7 and b so that
0 -1

U= th + tp, with 7 parallel to v and i, orthogonal to V.

Solution.

—_ s [ 3 15/11
U1 = projyu = ( 2)\7=ﬁ 1| = 5/11
-1 —5/11
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Example

2 3
Let /= | —1 | and V = 1 |. Find vectors &7 and b so that
0 -1
U= th + tp, with 7 parallel to v and i, orthogonal to V.
Solution.
B o FoR) _ 5 3 15/11
i1 = projyi = — | V= 11 1| = 5/11
gl -1 —5/11
. 7 7/11
h=u—th = | —1 -1 1| = 11 -16 | = | —16/11
0 -1 5 5/11
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Distance from a Point to a Line
Example

Let P(3,2,—1) be a point in R3 and L a line with equation

X 2 3
y|l=1|+t| -1
z 3 —2

Find the shortest distance from P to L, and find the point @ on L that is
closest to P.
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Distance from a Point to a Line

Example

Let P(3,2,—1) be a point in R® and L a line with equation

X 2 3
y|l=1|+t| -1
z 3 —2

Find the shortest distance from P to L, and find the point @ on L that is
closest to P.

Solution. Let Py = Py(2,1,3) be a point on L,
and let d = [ 3 -1 —2
Then @:prq ,@—OPO—}—?

and the shortest distance from P to L is

the length of @ where Q? = ﬁ — m.
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Example (continued)

PP=[11 -4]".d=[3 -1 2]".

P0G = proj PP = (mi'd> JE!

15

—10

] |
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Example (continued)

PP=[11 -4]".d=[3 -1 2]".

Fo0 = prol PoP = (Wf”) g- 2 [

Therefore,

29

1

71 2|
11

3 15
1 |=2| =5 .
—2 —10
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Example (continued)

Finally, the shortest distance from P(3,2,—1) to L is the length of @
where

17 ] 18] [ 4
QP=PP-PG=| 1|-=| —5|=2| 6
4| Tl-1w0]| | -9
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Example (continued)

Finally, the shortest distance from P(3,2,—1) to L is the length of @
where

17 ] 18] [ 4
QP=PP-PG=| 1|-=| -5|==]| 6
4| Tl-1w0]| | -9

Therefore the shortest distance from P to L is

1@BI =2 —ap e+ (-0 = 2vim,
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Example (continued)

Finally, the shortest distance from P(3,2,—1) to L is the length of @
where

17 ] 18] [ 4
QP=PP-PG=| 1|-=| -5|==]| 6
4| Tl-1w0]| | -9

Therefore the shortest distance from P to L is

1@BI =2 —ap e+ (-0 = 2vim,

§4.2 Example 8 is similar.
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Equations of Planes

Given a point Py and a nonzero vector 7, there is a unique plane
containing Py and orthogonal to .

Definition

A nonzero vector 1 is a normal vector to a plane if and only if 7e vV =0
for every vector V in the plane.

Section 4.2 Page 20/32 |



Equations of Planes

Given a point Py and a nonzero vector 7, there is a unique plane
containing Py and orthogonal to .

Definition
A nonzero vector 1 is a normal vector to a plane if and only if 7e vV =0
for every vector V in the plane.

Consider a plane containing a point Py and orthogonal to vector 7, and let
P be an arbitrary point on this plane.
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Equations of Planes

Given a point Py and a nonzero vector 7, there is a unique plane
containing Py and orthogonal to .

Definition
A nonzero vector 1 is a normal vector to a plane if and only if 7e vV =0
for every vector V in the plane.

Consider a plane containing a point Py and orthogonal to vector 7, and let
P be an arbitrary point on this plane.

Then
e PoP =0,
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Equations of Planes

Given a point Py and a nonzero vector 7, there is a unique plane
containing Py and orthogonal to .

Definition
A nonzero vector 1 is a normal vector to a plane if and only if 7e vV =0
for every vector V in the plane.

Consider a plane containing a point Py and orthogonal to vector 7, and let
P be an arbitrary point on this plane.

Then
e PoP =0,

or, equivalently, _
ﬁ.(o_P>—0Po) =0,

and is a vector equation of the plane.

Section 4.2 Page 20/32 |



The vector equation .
fie (0P — 0Py) =0

written
can also be written as ) ? )
ne 0P = ne0F,.
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The vector equation .
fie (0P — 0Py) =0

can also be written as
—
me O? = 7e0Pg.
Now suppose Py = Poy(xo, Y0,20), P = P(x,y,z), and i = [ a b c ]T
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The vector equation .
fie (0P — 0Py) =0

can also be written as
—
me (ﬁ = 7e0Pg.
Now suppose Py = Poy(xo, Y0,20), P = P(x,y,z), and i = [ a b c ]T
Then the previous equation becomes

a X a X0
blely|=|ble]| |,
C z C 20
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The vector equation .
fie (0P — 0Py) =0

ﬁo(ﬁ=r700_Po>.

Now suppose Py = Poy(xo, Y0,20), P = P(x,y,z), and i = [ a b c
Then the previous equation becomes

can also be written as

]T

a X a X0
blely|=|ble]|xw],
C z C 20

So
ax + by + cz = axp + by + czo,

where d = axg + byp + czp is simply a scalar.
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The vector equation .
fie (0P — 0Py) =0

ﬁo(ﬁzﬁoo_Po).

Now suppose Py = Poy(xo, Y0,20), P = P(x,y,z), and i = [ a b c
Then the previous equation becomes

can also be written as

]T

a X a X0
blely|=|ble]|xw],
C z C 20

So
ax + by + cz = axp + by + czo,

where d = axg + byp + czp is simply a scalar.
A scalar equation of the plane has the form

ax + by + cz = d, where a,b,c,d € R.
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Example

Find an equation of the plane containing Py(1,—1,0) and orthogonal to
— T
Ai=[-35 2]".
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Example

Find an equation of the plane containing Py(1,—1,0) and orthogonal to
. T

Ai=[-35 2]".

Solution.

A vector equation of this plane is

-3 x—1
5| y+1 ]| =0
2 z
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Example

Find an equation of the plane containing Py(1,—1,0) and orthogonal to
. T

Ai=[-35 2]".

Solution.

A vector equation of this plane is

-3 x—1
5 (e y+1 | =0.
2 z

A scalar equation of this plane is
—3x+ 5y +2z=—-3(1) + 5(—1) + 2(0) = -8,
i.e., the plane has scalar equation

—3x+5y +2z=-8.
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§4.2 Example 11: Two solutions to the problem of finding the shortest
distance from a point to a plane.
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§4.2 Example 11: Two solutions to the problem of finding the shortest
distance from a point to a plane.

Example

Find the shortest distance from the point P(2,3,0) to the plane with
equation 5x + y + z = —1, and find the point Q on the plane that is
closest to P.
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§4.2 Example 11: Two solutions to the problem of finding the shortest
distance from a point to a plane.
Example

Find the shortest distance from the point P(2,3,0) to the plane with
equation 5x + y + z = —1, and find the point Q on the plane that is
closest to P.

Solution (like the first solution to §4.2 Example 11).

» P(2,3,0)
T 7l / Pick an arbitrary point Py on the plane.
V | Then Q? = proj ﬁ

)

p 0 ||QP|| is the shortest distance,
° and 0Q = 0P — QP.

Section 4.2 Page 23/32 |



§4.2 Example 11: Two solutions to the problem of finding the shortest
distance from a point to a plane.
Example

Find the shortest distance from the point P(2,3,0) to the plane with
equation 5x + y + z = —1, and find the point Q on the plane that is
closest to P.

Solution (like the first solution to §4.2 Example 11).

» P(2,3,0)
T 7l / Pick an arbitrary point Py on the plane.
V | Then Q? = proj ﬁ

)

p 0 ||QP|| is the shortest distance,
° and 0Q = 0P — QP.

i=[5 1 1]".
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§4.2 Example 11: Two solutions to the problem of finding the shortest
distance from a point to a plane.

Example

Find the shortest distance from the point P(2,3,0) to the plane with
equation 5x + y + z = —1, and find the point Q on the plane that is
closest to P.

Solution (like the first solution to §4.2 Example 11).

» P(2,3,0)
T 7l / Pick an arbitrary point Py on the plane.
V | Then Q? = proj ﬁ

2 ]\@\| is the shortest distance,

P
0 @Q and 0Q = 0P — QP.

=[5 1 1]". Choose Py = Po(0,0,—1).
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§4.2 Example 11: Two solutions to the problem of finding the shortest
distance from a point to a plane.
Example

Find the shortest distance from the point P(2,3,0) to the plane with
equation 5x + y + z = —1, and find the point Q on the plane that is
closest to P.

Solution (like the first solution to §4.2 Example 11).

» P(2,3,0)
7l / Pick an arbitrary point Py on the plane.
V | Then Q? = proj ﬁ
)

||QP]| is the shortest distance,
and 0Q = 0P — QP.

—[5 1 1]". Choose Py = P(0,0, 1),

n
Then PP =[2 3 1]7
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Example (continued)

» P(2,3,0)
}i / PP=[23 1]

Po Q
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Example (continued)

: P(2,3,0)
Z

Po Q

R

Po

Section 4.2

Page 24/32




Example (continued)

» P(2,3,0)
Tﬁ / PP=[23 1]

Po Q

QP = proj;PoP (ﬁz'ﬁﬁ:ﬂ[fi 1 1]"

S\ e )t
Since ||§5|| — 18,/27 = 145 the shortest distance from P to the plane is 143
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Example (continued)

» P(2,3,0)
Tﬁ / PP=[23 1]

Po Q

||A1[? 27
Since ||§5|| — 18,/27 = 145 the shortest distance from P to the plane is 143
To find Q, we have

00 =0P - QP

@zpwjﬁ@=<b€3.ﬁ> i=2[s 1 1],

[2 3 o]T—;—‘;[s 111"

1 T
2—7[—16 67 —14 ] .
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Example (continued)

» P(2,3,0)
Tﬁ / P—ol_gz[Q 3 1]T
.
PO Q
; _ 73;7-").,7 L 14 .
Since ||a>>|| = %\/2_ = %Q, the shortest distance from P to the plane is %,
To find Q, we have
00-0P-@F — [2 3 0] -3 [5 1 1]
= 2—17[—16 67 —14]".
Therefore Q = Q (_é_?’ %’_%).
(]
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The Cross Product

Definition

Let17=[x1 )41 zl}Tand \7=[X2 )% Zz]T. Then

Yiz2 —z1y2
0xVv= —(X122 — 21X2)
X1Y2 — Y1X2
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The Cross Product

Definition

Let17=[x1 )41 zl}Tand \7=[X2 )% Zz]T. Then

Yizo — 21)2
0xVv= —(X122 — 21X2)
X1Y2 — y1X2

Note. o x V is a vector that is orthogonal to both & and V.
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The Cross Product

Definition
~ T . T
Letuz[xl 1 zl} and v:[x2 ¥ 22] . Then
Y122 — 21)2
0xVv= —(X122 — 21X2)
X1Y2 — y1X2 |

Note. o x V is a vector that is orthogonal to both & and V.

A mnemonic device:

F X1 X 1 0 0
GxvV=|j y1 yo |, wherei=|0]|,j=|1]|,k=]0
K z1 =z 0 0 1
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Theorem (§4.2 Theorem 5)
Let i,V € R3.
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Theorem (§4.2 Theorem 5)
Let i,V € R3.

@ U x V is orthogonal to both i and V.
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Theorem (§4.2 Theorem 5)
Let i,V € R3.
©Q i x V is orthogonal to both i and V.

Q@ If i and V are both nonzero, then i x vV = 0 if and only if & and V are
parallel.
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Example
Find all vectors orthogonal to both 7= [ =1 -3 2 ]T and

v=[0 1 1]
(We previously solved this using the dot product.)
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Example
Find all vectors orthogonal to both 7= [ =1 -3 2 ]T and

v=[0 1 1]".
(We previously solved this using the dot product.)

Solution.
i -1 0 -5
ixv=|j =3 1|==5i+j—k=| 1
kK 21 -1
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Example
Find all vectors orthogonal to both 7= [ =1 -3 2 ]T and

v=[0 1 1]".
(We previously solved this using the dot product.)

Solution.
i -1 0 -5
ixv=|j =3 1|==5i+j—k=| 1
kK 21 -1

Any scalar multiple of & x v is also orthogonal to both & and V, so

-5
t 1 |.,teR,
-1

gives all vectors orthogonal to both & and V.
(Compare this with our earlier answer.)
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84.2 Example 13 shows how to find an equation of a plane that contains
three non-colinear points.

§4.2 Example 14 shows how to find the shortest distance between skew
lines, i.e., lines that are not parallel and do not intersect.
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Distance between skew lines

Example

Given two lines

X 3 1
Ly: |y | = 1| +s 1 and L, :
z -1 —1

A. Find the shortest distance between L; and L.

X 1 1
y|l=|2|+t] 0],
z 0 2

B. Find the shortest distance between L; and L,, and find the points P on L;

and @ on L, that are closest together.
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Distance between skew lines

Example

Given two lines

x
w
—_
X
—
—

Ly: |y | = 1| +s 1 and L, :

N <
Il
N
S
~
o

A. Find the shortest distance between L; and L.

B. Find the shortest distance between L; and L,, and find the points P on L;
and @ on L, that are closest together.

Solution A.
p . Choose P1(3,1,—1) on L; and P>(1,2,0) on L.
1
i . 1 . 1
i Let di = 1 andd, = | O denote direction vectors

-1 2
\P;\é\ for Ly and Ly, respectively.
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Example (continued)

P1(3,1,-1)

~ 1 = 1
1= 1 |,d= 0
-1 2

The shortest distance between L; and L is the length
of the projection of P1P, onto A = dl X d2

Section 4.2

Page 30/32 o |




Example (continued)

P1(3,1,-1)

The shortest distance between L; and L is the length
of the projection of P1P, onto A = dl X d2

-2 1 1 2
PP, = 1 and n = 1| x| 0]|={ -3
1 -1 2 -1
Page 30/32 o |
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Example (continued)

P1(371a_1) . [ 1 :| i |: 1 :|
= 1 (,db=|0
—1 2

The shortest distance between L; and L is the length
of the projection of P1P, onto A = dl X d2

-2 1 1 2
PP, = 1 and n = 1| x| 0]|={ -3
1 -1 2 -1

j#P1P PP e i, and ||projzP1Px]|| [P1P2 o A
P12 = = | PPl = — -
1112 1A
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Example (continued)

P1(371a_1) . [ 1 :| i |: 1 :|
= 1 |,do=|0
-1 2

The shortest distance between L and L is the length
of the projection of P1P, onto A = dl X d2

-2 1 1 2
PP, = 1 and n = 1| x| 0]|={ -3
1 -1 2 -1

proj; PP = (Pngoﬁ' , and ||proj W” [PLP2 o A

P12 = = | =
|12 |1}

8I _ 4\/—

Therefore, the shortest distance between L; and L, is
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Example (continued)

Solution B. . 1] 1
= 1 (,do=1] 0 |;
-1 2
P P1(3a 17 _1)
; 3+s
! 0?: 1+s for some s € R;
. —1-—s
P, ?2,0\‘\ 1+t
( ) Q (ﬁ: 2 for some t € R.
2t
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Example (continued)
Solution B.

P P1(3,17_1)

P (m\

3+s
0?: |: 1+s :| for some s € R;
—1-—s

1+t
2 for some t € R.
2t

00 =

Now PO — [ 2-s+t 1-s 1+s+2¢ ]Tisorthogonalto both L; and

Lo, so

@ocfl:Oand @.d}:o,
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Example (continued)

Solution B. . L L
1= 1 0 d2 = 0 '
1 2
P P1(3,17_1)
‘ 3+s
: 0?: 1+s for some s € R;
: —-1-—s
P21\,;70\‘\ 14t
( ) Q (ﬁ: 2 for some t € R.
2t

Now PO = [ 2-s+t 1-s 1+s+2¢ ]Tisorthogonalto both L; and

Ly, so
POed,=0and POed—0,
ie., —-2—-3s—t = 0
s+5t = 0.
Page 31/32 |
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Example (continued)

Solution B. . { 1] . [1}
= 1 |,dbo=| 0 [;

=il 2
P Pi(3,1,-1)
; 3+s
! 0?: 1+s for some s € R;
i —1-s
Px(1,2,0 ‘ 1+t
2(\‘\)5\ (ﬁ = 2 for some t € R.
2t
Now PO = [ 2-s+t 1-s 1+s+2¢ ]T is orthogonal to both L; and
Ly, so
PGed,=0and POeds =0,
i.e., —2—-3s—-t = 0
s+5t = 0.
. . . _ 5 _ 1
This system has unique solution s = —3 and t = 7.
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Example (continued)

Solution B. . 1] 1
= 1 |,dbo=| 0 [;
-1 2
P P1(3’17_1)
: 3+s
! 0?: 1+s for some s € R;
| —-1-s
P»(1,2,0 ‘ 1+t
2(\‘\)5\ (ﬁ: 2 for some t € R.
2t
Now PO = [ 2-s+t 1-s 1+s+2¢ ]T is orthogonal to both L; and
Lo, so
PGed,=0and PQed =0,
ie., —2—-3s—t = 0
s+5t = 0.
This system has unique solution s = —2 and t = 1. Therefore,
16 2 2 8 2
p=p(2,2 % =Q(=,22).
<7777 7) and Q 0(7, ,7)
Page 31/32 o |
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Example (continued)

The shortest distance between L; and L is ||@||. Since

16 2 2 8 . 2
= —_— =, == = -2 —
P P<777, 7) and Q Q<7,,7>,
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Example (continued)

The shortest distance between L; and L is ||@||. Since

16 2 2 8
P = P<7 7—?> and Q = Q(;

8 16
PO—1| 1 —% 2 :;
2 —2
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Example (continued)

The shortest distance between L; and L is ||@||. Since

16 2 2 8 . 2
P—P<7,7,—?> and Q Q<7 2 ?>,

8 16 —8

2 2 4

and

1 4
1PG|| = -V22h = 214,
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Example (continued)

The shortest distance between L; and L is ||@|| Since

62 2 8
8 16 8
PO—l1a |-t 22L] 12
2 I N I B 2 B

and

1 4
1PG|| = -V224 = V14,

Therefore the shortest distance between L; and Ls is 7\/

\lll\)
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