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Definition

Let ~u =

 x1
y1
z1

 and ~v =

 x2
y2
z2

 be vectors in R3. The dot product of ~u

and ~v is
~u • ~v = x1x2 + y1y2 + z1z2,

i.e., ~u • ~v is a scalar.

Note. Another way to think about the dot product is as the 1× 1 matrix

~uT~v =
[
x1 y1 z1

]  x2
y2
z2

 =
[
x1x2 + y1y2 + z1z2

]
.
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Properties of the Dot Product

Theorem (§4.2 Theorem 1)

Let ~u, ~v , ~w be vectors in R3 (or R2) and let k ∈ R.

1 ~u • ~v is a real number.

2 ~u • ~v = ~v • ~u. (commutative property)

3 ~u •~0 = 0.

4 ~u • ~u = ||~u||2.
5 (k~u) • ~v = k(~u • ~v) = ~u • (k~v). (associative property)

6 ~u • (~v + ~w) = ~u • ~v + ~u • ~w. (distributive properties)
~u • (~v − ~w) = ~u • ~v − ~u • ~w.
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Let ~u and ~v be two vectors in R3 (or R2), positioned so they have the
same tail. Then there is a unique angle θ between ~u and ~v with 0 ≤ θ ≤ π.

~u

~v

θ ~u ~v

θ

Theorem (§4.2 Theorem 2)

Let ~u and ~v be nonzero vectors, and let θ denote the angle between ~u and
~v. Then

~u • ~v = ||~u|| ||~v || cos θ.

This is an intrinsic description of the dot product.

The proof uses the Law of Cosines, which is a generalization of the
Pythagorean Theorem.

Section 4.2 Page 5/32



Let ~u and ~v be two vectors in R3 (or R2), positioned so they have the
same tail. Then there is a unique angle θ between ~u and ~v with 0 ≤ θ ≤ π.

~u

~v

θ ~u ~v

θ

Theorem (§4.2 Theorem 2)

Let ~u and ~v be nonzero vectors, and let θ denote the angle between ~u and
~v. Then

~u • ~v = ||~u|| ||~v || cos θ.

This is an intrinsic description of the dot product.

The proof uses the Law of Cosines, which is a generalization of the
Pythagorean Theorem.

Section 4.2 Page 5/32



Let ~u and ~v be two vectors in R3 (or R2), positioned so they have the
same tail. Then there is a unique angle θ between ~u and ~v with 0 ≤ θ ≤ π.

~u

~v

θ ~u ~v

θ

Theorem (§4.2 Theorem 2)

Let ~u and ~v be nonzero vectors, and let θ denote the angle between ~u and
~v. Then

~u • ~v = ||~u|| ||~v || cos θ.

This is an intrinsic description of the dot product.

The proof uses the Law of Cosines, which is a generalization of the
Pythagorean Theorem.

Section 4.2 Page 5/32



Let ~u and ~v be two vectors in R3 (or R2), positioned so they have the
same tail. Then there is a unique angle θ between ~u and ~v with 0 ≤ θ ≤ π.

~u

~v

θ ~u ~v

θ

Theorem (§4.2 Theorem 2)

Let ~u and ~v be nonzero vectors, and let θ denote the angle between ~u and
~v. Then

~u • ~v = ||~u|| ||~v || cos θ.

This is an intrinsic description of the dot product.

The proof uses the Law of Cosines, which is a generalization of the
Pythagorean Theorem.

Section 4.2 Page 5/32



~u • ~v = ||~u|| ||~v || cos θ.

If 0 ≤ θ < π
2 , then cos θ > 0.

If θ = π
2 , then cos θ = 0.

If π
2 < θ ≤ π, then cos θ < 0.

Therefore, for nonzero vectors ~u and ~v ,

~u • ~v > 0 if and only if 0 ≤ θ < π
2 .

~u • ~v = 0 if and only if θ = π
2 .

~u • ~v < 0 if and only if π
2 < θ ≤ π.
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Definition

Vectors ~u and ~v are orthogonal if and only if ~u = ~0 or ~v = ~0 or θ = π
2 .

Theorem (§4.2 Theorem 3)

Vectors ~u and ~v are orthogonal if and only if ~u • ~v = 0.
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Example

Find the angle between ~u =

 1
0
−1

 and ~v =

 0
1
−1

.

Solution.
~u • ~v = 1, ||~u|| =

√
2 and ||~v || =

√
2.

Therefore, by Theorem 2,

cos θ =
~u • ~v
||~u|| ||~v ||

=
1√

2
√

2
=

1

2
.

Since 0 ≤ θ ≤ π, θ = π
3 .

Therefore, the angle between ~u and ~v is π
3 .
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Example

Find the angle between ~u =

 7
−1

3

 and ~v =

 1
4
−1

.

Solution.
~u • ~v = 0, and therefore the angle between the vectors is π

2 .
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Example

Find all vectors ~v =

 x
y
z

 orthogonal to both

~u =

 −1
−3

2

 and ~w =

 0
1
1



Solution. There are infinitely many such vectors.
Since ~v is orthogonal to both ~u and ~w ,

~v • ~u = −x − 3y + 2z = 0
~v • ~w = y + z = 0

This is a homogeneous system of two linear equation in three variables.[
−1 −3 2 0

0 1 1 0

]
→ · · · →

[
1 0 −5 0
0 1 1 0

]
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Example (continued)[
1 0 −5 0
0 1 1 0

]
implies that ~v =

 5t
−t
t

 for t ∈ R.

Therefore, ~v = t

 5
−1

1

 for all t ∈ R.
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Example

Are A(4,−7, 9), B(6, 4, 4) and C (7, 10,−6) the vertices of a right angle
triangle?

Solution.

−→
AB =

 2
11
−5

 ,−→AC =

 3
17
−15

 ,−→BC =

 1
6

−10


−→
AB •

−→
AC = 6 + 187 + 75 6= 0.

−→
BA •

−→
BC = (−

−→
AB) •

−→
BC = −2− 66− 50 6= 0.

−→
CA •

−→
CB = (−

−→
AC ) • (−

−→
BC ) =

−→
AC •

−→
BC = 3 + 102 + 150 6= 0.

None of the angles is π
2 , and therefore the triangle is not a right angle

triangle.

Work through §4.2 Example 4 yourselves.
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Example (§4.2 Example 5)

A rhombus is a parallelogram with sides of equal length. Prove that the
diagonals of a rhombus are perpendicular.

Solution.

~u

~v

Define the parallelogram (rhombus) by

vectors ~u and ~v .

Then the diagonals are ~u + ~v and ~u − ~v .

Show that ~u + ~v and ~u − ~v are perpendicular.

(~u + ~v) • (~u − ~v) = ~u • ~u − ~u • ~v + ~v • ~u − ~v • ~v
= ||~u||2 − ~u • ~v + ~u • ~v − ||~v ||2

= ||~u||2 − ||~v ||2

= 0, since ||~u|| = ||~v ||.

Therefore, the diagonals are perpendicular.
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Projections
Given nonzero vectors ~u and ~d , express ~u as a sum ~u = ~u1 + ~u2, where ~u1
is parallel to ~d and ~u2 is orthogonal to ~d .

~d

~u

~u1

~u

~u2

~u1 is the projection of ~u onto ~d , written ~u1 = proj~d~u.

Since ~u1 is parallel to ~d , ~u1 = t ~d for some t ∈ R.
Furthermore, ~u2 = ~u − ~u1, so:

0 = ~u2 • ~d = (~u − ~u1) • ~d = (~u − t ~d) • ~d = ~u • ~d − t(~d • ~d)

Hence since ~d 6= ~0, we get t = ~u•~d
||~d ||2

, and therefore

~u1 =

(
~u • ~d
||~d ||2

)
~d .
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Theorem (§4.2 Theorem 4)

Let ~u and ~d be vectors with ~d 6= ~0.

1

proj~d~u =

(
~u • ~d
||~d ||2

)
~d .

2

~u −

(
~u • ~d
||~d ||2

)
~d

is orthogonal to ~d.
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Example

Let ~u =

 2
−1

0

 and ~v =

 3
1
−1

. Find vectors ~u1 and ~u2 so that

~u = ~u1 + ~u2, with ~u1 parallel to ~v and ~u2 orthogonal to ~v .

Solution.

~u1 = proj~v ~u =

(
~u • ~v
||~v ||2

)
~v =

5

11

 3
1
−1

 =

 15/11
5/11
−5/11

 .

~u2 = ~u − ~u1 =

 2
−1

0

− 5

11

 3
1
−1

 =
1

11

 7
−16

5

 =

 7/11
−16/11

5/11

 .
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Distance from a Point to a Line

Example

Let P(3, 2,−1) be a point in R3 and L a line with equation x
y
z

 =

 2
1
3

+ t

 3
−1
−2

 .
Find the shortest distance from P to L, and find the point Q on L that is
closest to P.

Solution.

0

L
P0

P

Q

~u

Let P0 = P0(2, 1, 3) be a point on L,

and let ~d =
[

3 −1 −2
]T

.

Then
−−→
P0Q = proj~d

−−→
P0P,

−→
0Q =

−−→
0P0 +

−−→
P0Q,

and the shortest distance from P to L is

the length of
−→
QP, where

−→
QP =

−−→
P0P −

−−→
P0Q.
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Example (continued)
−−→
P0P =

[
1 1 −4

]T
, ~d =

[
3 −1 −2

]T
.

−−→
P0Q = proj~d

−−→
P0P =

(−−→
P0P • ~d
||~d ||2

)
~d =

10

14

 3
−1
−2

 =
1

7

 15
−5
−10

 .

Therefore,

−→
0Q =

 2
1
3

+
1

7

 15
−5
−10

 =
1

7

 29
2

11

 ,
so Q = Q

(
29
7 ,

2
7 ,

11
7

)
.
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Example (continued)

Finally, the shortest distance from P(3, 2,−1) to L is the length of
−→
QP,

where

−→
QP =

−−→
P0P −

−−→
P0Q =

 1
1
−4

− 1

7

 15
−5
−10

 =
2

7

 −4
6
−9

 .

Therefore the shortest distance from P to L is

||
−→
QP|| =

2

7

√
(−4)2 + 62 + (−9)2 =

2

7

√
133.

§4.2 Example 8 is similar.
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Equations of Planes

Given a point P0 and a nonzero vector ~n, there is a unique plane
containing P0 and orthogonal to ~n.

Definition

A nonzero vector ~n is a normal vector to a plane if and only if ~n • ~v = 0
for every vector ~v in the plane.

Consider a plane containing a point P0 and orthogonal to vector ~n, and let
P be an arbitrary point on this plane.
Then

~n •
−−→
P0P = 0,

or, equivalently,

~n • (
−→
0P −

−−→
0P0) = 0,

and is a vector equation of the plane.
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The vector equation

~n • (
−→
0P −

−−→
0P0) = 0

can also be written as
~n •
−→
0P = ~n •

−−→
0P0.

Now suppose P0 = P0(x0, y0, z0), P = P(x , y , z), and ~n =
[
a b c

]T
.

Then the previous equation becomes a
b
c

 •
 x

y
z

 =

 a
b
c

 •
 x0

y0
z0

 ,
so

ax + by + cz = ax0 + by0 + cz0,

where d = ax0 + by0 + cz0 is simply a scalar.
A scalar equation of the plane has the form

ax + by + cz = d , where a, b, c, d ∈ R.
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Example

Find an equation of the plane containing P0(1,−1, 0) and orthogonal to

~n =
[
−3 5 2

]T
.

Solution.
A vector equation of this plane is −3

5
2

 •
 x − 1

y + 1
z

 = 0.

A scalar equation of this plane is

−3x + 5y + 2z = −3(1) + 5(−1) + 2(0) = −8,

i.e., the plane has scalar equation

−3x + 5y + 2z = −8.
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§4.2 Example 11: Two solutions to the problem of finding the shortest
distance from a point to a plane.

Example

Find the shortest distance from the point P(2, 3, 0) to the plane with
equation 5x + y + z = −1, and find the point Q on the plane that is
closest to P.

Solution (like the first solution to §4.2 Example 11).

P0

~n

Q

P(2, 3, 0)

Pick an arbitrary point P0 on the plane.

Then
−→
QP = proj~n

−−→
P0P,

||
−→
QP|| is the shortest distance,

and
−→
0Q =

−→
0P −

−→
QP.

~n =
[

5 1 1
]T

. Choose P0 = P0(0, 0,−1).

Then
−−→
P0P =

[
2 3 1

]T
.
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Example (continued)

P0

~n

Q

P(2, 3, 0)
−−→
P0P =

[
2 3 1

]T
.

~n =
[

5 1 1
]T

.

−→
QP = proj~n

−−→
P0P =

(−−→
P0P • ~n
||~n||2

)
~n =

14

27

[
5 1 1

]T
.

Since ||
−→
QP|| = 14

27

√
27 = 14

√
3

9 , the shortest distance from P to the plane is 14
√
3

9 .

To find Q, we have
−→
0Q =

−→
0P −

−→
QP =

[
2 3 0

]T − 14

27

[
5 1 1

]T
=

1

27

[
−16 67 −14

]T
.

Therefore Q = Q
(
− 16

27 ,
67
27 ,−

14
27

)
.
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The Cross Product

Definition

Let ~u =
[
x1 y1 z1

]T
and ~v =

[
x2 y2 z2

]T
. Then

~u × ~v =

 y1z2 − z1y2
−(x1z2 − z1x2)
x1y2 − y1x2

 .

Note. ~u × ~v is a vector that is orthogonal to both ~u and ~v .

A mnemonic device:

~u × ~v =

∣∣∣∣∣∣∣
~i x1 x2
~j y1 y2
~k z1 z2

∣∣∣∣∣∣∣ , where ~i =

 1
0
0

 , ~j =

 0
1
0

 , ~k =

 0
0
1

 .
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Theorem (§4.2 Theorem 5)

Let ~u, ~v ∈ R3.

1 ~u × ~v is orthogonal to both ~u and ~v.

2 If ~u and ~v are both nonzero, then ~u × ~v = ~0 if and only if ~u and ~v are
parallel.
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Example

Find all vectors orthogonal to both ~u =
[
−1 −3 2

]T
and

~v =
[

0 1 1
]T

.
(We previously solved this using the dot product.)

Solution.

~u × ~v =

∣∣∣∣∣∣∣
~i −1 0
~j −3 1
~k 2 1

∣∣∣∣∣∣∣ = −5~i + ~j − ~k =

 −5
1
−1

 .
Any scalar multiple of ~u × ~v is also orthogonal to both ~u and ~v , so

t

 −5
1
−1

 , t ∈ R,

gives all vectors orthogonal to both ~u and ~v .
(Compare this with our earlier answer.)
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§4.2 Example 13 shows how to find an equation of a plane that contains
three non-colinear points.

§4.2 Example 14 shows how to find the shortest distance between skew
lines, i.e., lines that are not parallel and do not intersect.
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Distance between skew lines

Example

Given two lines

L1 :

 x
y
z

 =

 3
1
−1

+ s

 1
1
−1

 and L2 :

 x
y
z

 =

 1
2
0

+ t

 1
0
2

 ,
A. Find the shortest distance between L1 and L2.

B. Find the shortest distance between L1 and L2, and find the points P on L1
and Q on L2 that are closest together.

Solution A.

P2 Q

P P1

Choose P1(3, 1,−1) on L1 and P2(1, 2, 0) on L2.

Let ~d1 =

 1
1
−1

 and ~d2 =

 1
0
2

 denote direction vectors

for L1 and L2, respectively.
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Example (continued)

P2(1, 2, 0) Q

P P1(3, 1,−1)
~d1 =

 1
1
−1

, ~d2 =

 1
0
2


The shortest distance between L1 and L2 is the length

of the projection of
−−−→
P1P2 onto ~n = ~d1 × ~d2.

−−−→
P1P2 =

 −2
1
1

 and ~n =

 1
1
−1

×
 1

0
2

 =

 2
−3
−1



proj~n
−−−→
P1P2 =

(−−−→
P1P2 • ~n
||~n||2

)
~n, and ||proj~n

−−−→
P1P2|| =

|
−−−→
P1P2 • ~n|
||~n||

.

Therefore, the shortest distance between L1 and L2 is |−8|√
14

= 4
7

√
14.
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Example (continued)

Solution B.

P2(1, 2, 0) Q

P P1(3, 1,−1)

~d1 =

 1
1
−1

, ~d2 =

 1
0
2

;
−→
0P =

 3 + s
1 + s
−1− s

 for some s ∈ R;

−→
0Q =

 1 + t
2
2t

 for some t ∈ R.

Now
−→
PQ =

[
−2− s + t 1− s 1 + s + 2t

]T
is orthogonal to both L1 and

L2, so −→
PQ • ~d1 = 0 and

−→
PQ • ~d2 = 0,

i.e., −2− 3s − t = 0

s + 5t = 0.

This system has unique solution s = − 5
7 and t = 1

7 . Therefore,

P = P

(
16

7
,

2

7
,−2

7

)
and Q = Q

(
8

7
, 2,

2

7

)
.
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Example (continued)

The shortest distance between L1 and L2 is ||
−→
PQ||. Since

P = P

(
16

7
,

2

7
,−2

7

)
and Q = Q

(
8

7
, 2,

2

7

)
,

−→
PQ =

1

7
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√
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√
14.

Therefore the shortest distance between L1 and L2 is 4
7

√
14.
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