[日 ${ }^{[1}$ UNIVERSITY OF

 CALGARY
MATH 211 - Fall 2012

Lecture Notes

K. Seyffarth

Section 4.2

$\S 4.2$ - Projections and Planes

Definition

Let $\vec{u}=\left[\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right]$ be vectors in \mathbb{R}^{3}. The dot product of \vec{u}
and \vec{v} is

$$
\vec{u} \bullet \vec{v}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2},
$$

i.e., $\vec{u} \bullet \vec{v}$ is a scalar.

Definition

Let $\vec{u}=\left[\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right]$ be vectors in \mathbb{R}^{3}. The dot product of \vec{u}
and \vec{v} is

$$
\vec{u} \bullet \vec{v}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2},
$$

i.e., $\vec{u} \bullet \vec{v}$ is a scalar.

Note. Another way to think about the dot product is as the 1×1 matrix

$$
\vec{u}^{T} \vec{v}=\left[\begin{array}{lll}
x_{1} & y_{1} & z_{1}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]=\left[x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right] .
$$

Properties of the Dot Product

Theorem ($\$ 4.2$ Theorem 1)
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}) and let $k \in \mathbb{R}$.

Properties of the Dot Product

Theorem (§4.2 Theorem 1)
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}) and let $k \in \mathbb{R}$.
(1) $\vec{u} \bullet \vec{v}$ is a real number.

Properties of the Dot Product

Theorem (§4.2 Theorem 1)
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}) and let $k \in \mathbb{R}$.
(1) $\vec{u} \bullet \vec{v}$ is a real number.
(2) $\vec{u} \bullet \vec{v}=\vec{v} \bullet \vec{u}$.

Properties of the Dot Product

Theorem (\$4.2 Theorem 1)
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}) and let $k \in \mathbb{R}$.
(1) $\vec{u} \bullet \vec{v}$ is a real number.
(2) $\vec{u} \bullet \vec{v}=\vec{v} \bullet \vec{u}$.
(commutative property)
(-) $\vec{u} \bullet \overrightarrow{0}=0$.

Properties of the Dot Product

Theorem (\$4.2 Theorem 1)
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}) and let $k \in \mathbb{R}$.
(1) $\vec{u} \bullet \vec{v}$ is a real number.
(2) $\vec{u} \bullet \vec{v}=\vec{v} \bullet \vec{u}$. (commutative property)
(- $\vec{u} \bullet \overrightarrow{0}=0$.
(1) $\vec{u} \bullet \vec{u}=\|\vec{u}\|^{2}$.

Properties of the Dot Product

Theorem (§4.2 Theorem 1)
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}) and let $k \in \mathbb{R}$.
(1) $\vec{u} \bullet \vec{v}$ is a real number.
(2) $\vec{u} \bullet \vec{v}=\vec{v} \bullet \vec{u}$.
(- $\vec{u} \bullet \overrightarrow{0}=0$.
(1) $\vec{u} \bullet \vec{u}=\|\vec{u}\|^{2}$.

- $(k \vec{u}) \bullet \vec{v}=k(\vec{u} \bullet \vec{v})=\vec{u} \bullet(k \vec{v})$.
(commutative property)

Properties of the Dot Product

Theorem (§4.2 Theorem 1)
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}) and let $k \in \mathbb{R}$.
(1) $\vec{u} \bullet \vec{v}$ is a real number.
(2) $\vec{u} \bullet \vec{v}=\vec{v} \bullet \vec{u}$.
(3) $\vec{u} \bullet \overrightarrow{0}=0$.
(9) $\vec{u} \bullet \vec{u}=\|\vec{u}\|^{2}$.
(5) $(k \vec{u}) \bullet \vec{v}=k(\vec{u} \bullet \vec{v})=\vec{u} \bullet(k \vec{v})$.
(6) $\vec{u} \bullet(\vec{v}+\vec{w})=\vec{u} \bullet \vec{v}+\vec{u} \bullet \vec{w}$.
(commutative property)
$\vec{u} \bullet(\vec{v}-\vec{w})=\vec{u} \bullet \vec{v}-\vec{u} \bullet \vec{w}$.
(associative property)
(distributive properties)

Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}), positioned so they have the same tail. Then there is a unique angle θ between \vec{u} and \vec{v} with $0 \leq \theta \leq \pi$.

Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}), positioned so they have the same tail. Then there is a unique angle θ between \vec{u} and \vec{v} with $0 \leq \theta \leq \pi$.

Theorem ($\S 4.2$ Theorem 2)
Let \vec{u} and \vec{v} be nonzero vectors, and let θ denote the angle between \vec{u} and \vec{v}. Then

$$
\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}), positioned so they have the same tail. Then there is a unique angle θ between \vec{u} and \vec{v} with $0 \leq \theta \leq \pi$.

Theorem ($\S 4.2$ Theorem 2)
Let \vec{u} and \vec{v} be nonzero vectors, and let θ denote the angle between \vec{u} and \vec{v}. Then

$$
\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

- This is an intrinsic description of the dot product.

Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}), positioned so they have the same tail. Then there is a unique angle θ between \vec{u} and \vec{v} with $0 \leq \theta \leq \pi$.

Theorem ($\S 4.2$ Theorem 2)
Let \vec{u} and \vec{v} be nonzero vectors, and let θ denote the angle between \vec{u} and \vec{v}. Then

$$
\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

- This is an intrinsic description of the dot product.
- The proof uses the Law of Cosines, which is a generalization of the Pythagorean Theorem.

$$
\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

$$
\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

- If $0 \leq \theta<\frac{\pi}{2}$, then $\cos \theta>0$.

$$
\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

- If $0 \leq \theta<\frac{\pi}{2}$, then $\cos \theta>0$.
- If $\theta=\frac{\pi}{2}$, then $\cos \theta=0$.

$$
\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

- If $0 \leq \theta<\frac{\pi}{2}$, then $\cos \theta>0$.
- If $\theta=\frac{\pi}{2}$, then $\cos \theta=0$.
- If $\frac{\pi}{2}<\theta \leq \pi$, then $\cos \theta<0$.

$$
\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

- If $0 \leq \theta<\frac{\pi}{2}$, then $\cos \theta>0$.
- If $\theta=\frac{\pi}{2}$, then $\cos \theta=0$.
- If $\frac{\pi}{2}<\theta \leq \pi$, then $\cos \theta<0$.

Therefore, for nonzero vectors \vec{u} and \vec{v},

- $\vec{u} \bullet \vec{v}>0$ if and only if $0 \leq \theta<\frac{\pi}{2}$.

$$
\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

- If $0 \leq \theta<\frac{\pi}{2}$, then $\cos \theta>0$.
- If $\theta=\frac{\pi}{2}$, then $\cos \theta=0$.
- If $\frac{\pi}{2}<\theta \leq \pi$, then $\cos \theta<0$.

Therefore, for nonzero vectors \vec{u} and \vec{v},

- $\vec{u} \bullet \vec{v}>0$ if and only if $0 \leq \theta<\frac{\pi}{2}$.
- $\vec{u} \bullet \vec{v}=0$ if and only if $\theta=\frac{\pi}{2}$.

$$
\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

- If $0 \leq \theta<\frac{\pi}{2}$, then $\cos \theta>0$.
- If $\theta=\frac{\pi}{2}$, then $\cos \theta=0$.
- If $\frac{\pi}{2}<\theta \leq \pi$, then $\cos \theta<0$.

Therefore, for nonzero vectors \vec{u} and \vec{v},

- $\vec{u} \bullet \vec{v}>0$ if and only if $0 \leq \theta<\frac{\pi}{2}$.
- $\vec{u} \bullet \vec{v}=0$ if and only if $\theta=\frac{\pi}{2}$.
- $\vec{u} \bullet \vec{v}<0$ if and only if $\frac{\pi}{2}<\theta \leq \pi$.

Definition

Vectors \vec{u} and \vec{v} are orthogonal if and only if $\vec{u}=\overrightarrow{0}$ or $\vec{v}=\overrightarrow{0}$ or $\theta=\frac{\pi}{2}$.

Definition

Vectors \vec{u} and \vec{v} are orthogonal if and only if $\vec{u}=\overrightarrow{0}$ or $\vec{v}=\overrightarrow{0}$ or $\theta=\frac{\pi}{2}$.

Theorem (§4.2 Theorem 3)
Vectors \vec{u} and \vec{v} are orthogonal if and only if $\vec{u} \bullet \vec{v}=0$.

Example

Find the angle between $\vec{u}=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$.

Example

Find the angle between $\vec{u}=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$.
Solution.
$\vec{u} \bullet \vec{v}=1,\|\vec{u}\|=\sqrt{2}$ and $\|\vec{v}\|=\sqrt{2}$.
Therefore, by Theorem 2,

$$
\cos \theta=\frac{\vec{u} \bullet \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\frac{1}{\sqrt{2} \sqrt{2}}=\frac{1}{2}
$$

Since $0 \leq \theta \leq \pi, \theta=\frac{\pi}{3}$.
Therefore, the angle between \vec{u} and \vec{v} is $\frac{\pi}{3}$.

Example

Find the angle between $\vec{u}=\left[\begin{array}{r}7 \\ -1 \\ 3\end{array}\right]$ and $\vec{v}=\left[\begin{array}{r}1 \\ 4 \\ -1\end{array}\right]$.

Example
Find the angle between $\vec{u}=\left[\begin{array}{r}7 \\ -1 \\ 3\end{array}\right]$ and $\vec{v}=\left[\begin{array}{r}1 \\ 4 \\ -1\end{array}\right]$.

Solution.

$\vec{u} \bullet \vec{v}=0$, and therefore the angle between the vectors is $\frac{\pi}{2}$.

Example

Find all vectors $\vec{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ orthogonal to both

$$
\vec{u}=\left[\begin{array}{r}
-1 \\
-3 \\
2
\end{array}\right] \text { and } \vec{w}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Example

Find all vectors $\vec{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ orthogonal to both

$$
\vec{u}=\left[\begin{array}{r}
-1 \\
-3 \\
2
\end{array}\right] \text { and } \vec{w}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Solution. There are infinitely many such vectors.

Example

Find all vectors $\vec{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ orthogonal to both

$$
\vec{u}=\left[\begin{array}{r}
-1 \\
-3 \\
2
\end{array}\right] \text { and } \vec{w}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Solution. There are infinitely many such vectors. Since \vec{v} is orthogonal to both \vec{u} and \vec{w},

$$
\begin{aligned}
\vec{v} \bullet \vec{u} & =-x-3 y+2 z=0 \\
\vec{v} \bullet \vec{w} & =y+z=0
\end{aligned}
$$

This is a homogeneous system of two linear equation in three variables.

$$
\left[\begin{array}{rrr|r}
-1 & -3 & 2 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & -5 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Example (continued)

$\left[\begin{array}{rrr|r}1 & 0 & -5 & 0 \\ 0 & 1 & 1 & 0\end{array}\right]$ implies that $\vec{v}=\left[\begin{array}{r}5 t \\ -t \\ t\end{array}\right]$ for $t \in \mathbb{R}$.
Therefore, $\vec{v}=t\left[\begin{array}{r}5 \\ -1 \\ 1\end{array}\right]$ for all $t \in \mathbb{R}$.

Example

Are $A(4,-7,9), B(6,4,4)$ and $C(7,10,-6)$ the vertices of a right angle triangle?

Example

Are $A(4,-7,9), B(6,4,4)$ and $C(7,10,-6)$ the vertices of a right angle triangle?
Solution.

$$
\overrightarrow{A B}=\left[\begin{array}{r}
2 \\
11 \\
-5
\end{array}\right], \overrightarrow{A C}=\left[\begin{array}{r}
3 \\
17 \\
-15
\end{array}\right], \overrightarrow{B C}=\left[\begin{array}{r}
1 \\
6 \\
-10
\end{array}\right]
$$

Example

Are $A(4,-7,9), B(6,4,4)$ and $C(7,10,-6)$ the vertices of a right angle triangle?
Solution.

$$
\overrightarrow{A B}=\left[\begin{array}{r}
2 \\
11 \\
-5
\end{array}\right], \overrightarrow{A C}=\left[\begin{array}{r}
3 \\
17 \\
-15
\end{array}\right], \overrightarrow{B C}=\left[\begin{array}{r}
1 \\
6 \\
-10
\end{array}\right]
$$

- $\overrightarrow{A B} \bullet \overrightarrow{A C}=6+187+75 \neq 0$.

Example

Are $A(4,-7,9), B(6,4,4)$ and $C(7,10,-6)$ the vertices of a right angle triangle?
Solution.

$$
\overrightarrow{A B}=\left[\begin{array}{r}
2 \\
11 \\
-5
\end{array}\right], \overrightarrow{A C}=\left[\begin{array}{r}
3 \\
17 \\
-15
\end{array}\right], \overrightarrow{B C}=\left[\begin{array}{r}
1 \\
6 \\
-10
\end{array}\right]
$$

- $\overrightarrow{A B} \bullet \overrightarrow{A C}=6+187+75 \neq 0$.
- $\overrightarrow{B A} \bullet \overrightarrow{B C}=(-\overrightarrow{A B}) \bullet \overrightarrow{B C}=-2-66-50 \neq 0$.

Example

Are $A(4,-7,9), B(6,4,4)$ and $C(7,10,-6)$ the vertices of a right angle triangle?
Solution.

$$
\overrightarrow{A B}=\left[\begin{array}{r}
2 \\
11 \\
-5
\end{array}\right], \overrightarrow{A C}=\left[\begin{array}{r}
3 \\
17 \\
-15
\end{array}\right], \overrightarrow{B C}=\left[\begin{array}{r}
1 \\
6 \\
-10
\end{array}\right]
$$

- $\overrightarrow{A B} \bullet \overrightarrow{A C}=6+187+75 \neq 0$.
- $\overrightarrow{B A} \bullet \overrightarrow{B C}=(-\overrightarrow{A B}) \bullet \overrightarrow{B C}=-2-66-50 \neq 0$.
- $\overrightarrow{C A} \bullet \overrightarrow{C B}=(-\overrightarrow{A C}) \bullet(-\overrightarrow{B C})=\overrightarrow{A C} \cdot \overrightarrow{B C}=3+102+150 \neq 0$.

Example

Are $A(4,-7,9), B(6,4,4)$ and $C(7,10,-6)$ the vertices of a right angle triangle?
Solution.

$$
\overrightarrow{A B}=\left[\begin{array}{r}
2 \\
11 \\
-5
\end{array}\right], \overrightarrow{A C}=\left[\begin{array}{r}
3 \\
17 \\
-15
\end{array}\right], \overrightarrow{B C}=\left[\begin{array}{r}
1 \\
6 \\
-10
\end{array}\right]
$$

- $\overrightarrow{A B} \cdot \overrightarrow{A C}=6+187+75 \neq 0$.
- $\overrightarrow{B A} \bullet \overrightarrow{B C}=(-\overrightarrow{A B}) \bullet \overrightarrow{B C}=-2-66-50 \neq 0$.
- $\overrightarrow{C A} \bullet \overrightarrow{C B}=(-\overrightarrow{A C}) \bullet(-\overrightarrow{B C})=\overrightarrow{A C} \cdot \overrightarrow{B C}=3+102+150 \neq 0$.

None of the angles is $\frac{\pi}{2}$, and therefore the triangle is not a right angle triangle.

Work through §4.2 Example 4 yourselves.

Example (§4.2 Example 5)

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular.

Example (§4.2 Example 5)

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular. Solution.

Define the parallelogram (rhombus) by

Then the diagonals are $\vec{u}+\vec{v}$ and $\vec{u}-\vec{v}$.
Show that $\vec{u}+\vec{v}$ and $\vec{u}-\vec{v}$ are perpendicular.

Example (§4.2 Example 5)

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular. Solution.

Define the parallelogram (rhombus) by
 vectors \vec{u} and \vec{v}.

Then the diagonals are $\vec{u}+\vec{v}$ and $\vec{u}-\vec{v}$.
Show that $\vec{u}+\vec{v}$ and $\vec{u}-\vec{v}$ are perpendicular.

$$
\begin{aligned}
(\vec{u}+\vec{v}) \bullet(\vec{u}-\vec{v}) & =\vec{u} \bullet \vec{u}-\vec{u} \bullet \vec{v}+\vec{v} \bullet \vec{u}-\vec{v} \bullet \vec{v} \\
& =\|\vec{u}\|^{2}-\vec{u} \bullet \vec{v}+\vec{u} \bullet \vec{v}-\|\vec{v}\|^{2} \\
& =\|\vec{u}\|^{2}-\|\vec{v}\|^{2} \\
& =0, \text { since }\|\vec{u}\|=\|\vec{v}\| .
\end{aligned}
$$

Therefore, the diagonals are perpendicular.

Projections

Given nonzero vectors \vec{u} and \vec{d}, express \vec{u} as a sum $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$, where \vec{u}_{1} is parallel to \vec{d} and \vec{u}_{2} is orthogonal to \vec{d}.

Projections

Given nonzero vectors \vec{u} and \vec{d}, express \vec{u} as a sum $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$, where \vec{u}_{1} is parallel to \vec{d} and \vec{u}_{2} is orthogonal to \vec{d}.

\vec{u}_{1} is the projection of \vec{u} onto \vec{d}, written $\vec{u}_{1}=\operatorname{proj}_{\vec{d}} \vec{u}$.

Projections

Given nonzero vectors \vec{u} and \vec{d}, express \vec{u} as a sum $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$, where \vec{u}_{1} is parallel to \vec{d} and \vec{u}_{2} is orthogonal to \vec{d}.

\vec{u}_{1} is the projection of \vec{u} onto \vec{d}, written $\vec{u}_{1}=\operatorname{proj}_{\vec{d}} \vec{u}$.
Since \vec{u}_{1} is parallel to $\vec{d}, \vec{u}_{1}=t \vec{d}$ for some $t \in \mathbb{R}$.

Projections

Given nonzero vectors \vec{u} and \vec{d}, express \vec{u} as a sum $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$, where \vec{u}_{1} is parallel to \vec{d} and \vec{u}_{2} is orthogonal to \vec{d}.

\vec{u}_{1} is the projection of \vec{u} onto \vec{d}, written $\vec{u}_{1}=\operatorname{proj}_{\vec{d}} \vec{u}$.
Since \vec{u}_{1} is parallel to $\vec{d}, \vec{u}_{1}=t \vec{d}$ for some $t \in \mathbb{R}$.
Furthermore, $\vec{u}_{2}=\vec{u}-\vec{u}_{1}$, so:

$$
0={\overrightarrow{u_{2}}}_{2} \bullet \vec{d}=\left(\vec{u}-\overrightarrow{u_{1}}\right) \bullet \vec{d}=(\vec{u}-t \vec{d}) \bullet \vec{d}=\vec{u} \bullet \vec{d}-t(\vec{d} \bullet \vec{d})
$$

Projections

Given nonzero vectors \vec{u} and \vec{d}, express \vec{u} as a sum $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$, where \vec{u}_{1} is parallel to \vec{d} and \vec{u}_{2} is orthogonal to \vec{d}.

\vec{u}_{1} is the projection of \vec{u} onto \vec{d}, written $\vec{u}_{1}=\operatorname{proj}_{\vec{d}} \vec{u}$.
Since \vec{u}_{1} is parallel to $\vec{d}, \vec{u}_{1}=t \vec{d}$ for some $t \in \mathbb{R}$.
Furthermore, $\vec{u}_{2}=\vec{u}-\vec{u}_{1}$, so:

$$
0=\vec{u}_{2} \bullet \vec{d}=\left(\vec{u}-\overrightarrow{u_{1}}\right) \bullet \vec{d}=(\vec{u}-t \vec{d}) \bullet \vec{d}=\vec{u} \bullet \vec{d}-t(\vec{d} \bullet \vec{d})
$$

Hence since $\vec{d} \neq \overrightarrow{0}$, we get $t=\frac{\vec{u} \bullet \vec{d}}{\|\vec{d}\|^{2}}$,

Projections

Given nonzero vectors \vec{u} and \vec{d}, express \vec{u} as a sum $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$, where \vec{u}_{1} is parallel to \vec{d} and \vec{u}_{2} is orthogonal to \vec{d}.

\vec{u}_{1} is the projection of \vec{u} onto \vec{d}, written $\vec{u}_{1}=\operatorname{proj}_{\vec{d}} \vec{u}$.
Since \vec{u}_{1} is parallel to $\vec{d}, \vec{u}_{1}=t \vec{d}$ for some $t \in \mathbb{R}$.
Furthermore, $\vec{u}_{2}=\vec{u}-\vec{u}_{1}$, so:

$$
0=\vec{u}_{2} \bullet \vec{d}=\left(\vec{u}-\overrightarrow{u_{1}}\right) \bullet \vec{d}=(\vec{u}-t \vec{d}) \bullet \vec{d}=\vec{u} \bullet \vec{d}-t(\vec{d} \bullet \vec{d})
$$

Hence since $\vec{d} \neq \overrightarrow{0}$, we get $t=\frac{\vec{\bullet} \cdot \vec{d}}{\|\vec{d}\|^{2}}$, and therefore

$$
\vec{u}_{1}=\left(\frac{\vec{u} \bullet \vec{d}}{\|\vec{d}\|^{2}}\right) \vec{d}
$$

Theorem (§4.2 Theorem 4)
Let \vec{u} and \vec{d} be vectors with $\vec{d} \neq \overrightarrow{0}$.

Theorem (§4.2 Theorem 4)
Let \vec{u} and \vec{d} be vectors with $\vec{d} \neq \overrightarrow{0}$.
(1)

$$
\operatorname{proj}_{\vec{d}} \vec{u}=\left(\frac{\vec{u} \bullet \vec{d}}{\|\vec{d}\|^{2}}\right) \vec{d}
$$

Theorem (§4.2 Theorem 4)
Let \vec{u} and \vec{d} be vectors with $\vec{d} \neq \overrightarrow{0}$.
(1)

$$
\operatorname{proj}_{\vec{d}} \vec{u}=\left(\frac{\vec{u} \bullet \vec{d}}{\|\vec{d}\|^{2}}\right) \vec{d} .
$$

(2)

$$
\vec{u}-\left(\frac{\vec{u} \bullet \vec{d}}{\|\vec{d}\|^{2}}\right) \vec{d}
$$

is orthogonal to \vec{d}.

Example

Let $\vec{u}=\left[\begin{array}{r}2 \\ -1 \\ 0\end{array}\right]$ and $\vec{v}=\left[\begin{array}{r}3 \\ 1 \\ -1\end{array}\right]$. Find vectors \vec{u}_{1} and \vec{u}_{2} so that $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$, with \vec{u}_{1} parallel to \vec{v} and \vec{u}_{2} orthogonal to \vec{v}.

Example

Let $\vec{u}=\left[\begin{array}{r}2 \\ -1 \\ 0\end{array}\right]$ and $\vec{v}=\left[\begin{array}{r}3 \\ 1 \\ -1\end{array}\right]$. Find vectors \vec{u}_{1} and \vec{u}_{2} so that $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$, with \vec{u}_{1} parallel to \vec{v} and \vec{u}_{2} orthogonal to \vec{v}. Solution.

$$
\vec{u}_{1}=\operatorname{proj}_{\vec{v}} \vec{u}=\left(\frac{\vec{u} \bullet \vec{v}}{\|\vec{v}\|^{2}}\right) \vec{v}=\frac{5}{11}\left[\begin{array}{r}
3 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
15 / 11 \\
5 / 11 \\
-5 / 11
\end{array}\right] .
$$

Example

Let $\vec{u}=\left[\begin{array}{r}2 \\ -1 \\ 0\end{array}\right]$ and $\vec{v}=\left[\begin{array}{r}3 \\ 1 \\ -1\end{array}\right]$. Find vectors \vec{u}_{1} and \vec{u}_{2} so that $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$, with \vec{u}_{1} parallel to \vec{v} and \vec{u}_{2} orthogonal to \vec{v}.

Solution.

$$
\begin{gathered}
\vec{u}_{1}=\operatorname{proj}_{\vec{v}} \vec{u}=\left(\frac{\vec{u} \bullet \vec{v}}{\|\vec{v}\|^{2}}\right) \vec{v}=\frac{5}{11}\left[\begin{array}{r}
3 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
15 / 11 \\
5 / 11 \\
-5 / 11
\end{array}\right] . \\
\vec{u}_{2}=\vec{u}-\vec{u}_{1}=\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]-\frac{5}{11}\left[\begin{array}{r}
3 \\
1 \\
-1
\end{array}\right]=\frac{1}{11}\left[\begin{array}{r}
7 \\
-16 \\
5
\end{array}\right]=\left[\begin{array}{r}
7 / 11 \\
-16 / 11 \\
5 / 11
\end{array}\right] .
\end{gathered}
$$

Distance from a Point to a Line

Example

Let $P(3,2,-1)$ be a point in \mathbb{R}^{3} and L a line with equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]+t\left[\begin{array}{r}
3 \\
-1 \\
-2
\end{array}\right]
$$

Find the shortest distance from P to L, and find the point Q on L that is closest to P.

Distance from a Point to a Line

Example

Let $P(3,2,-1)$ be a point in \mathbb{R}^{3} and L a line with equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]+t\left[\begin{array}{r}
3 \\
-1 \\
-2
\end{array}\right]
$$

Find the shortest distance from P to L, and find the point Q on L that is closest to P.

Solution.

Let $P_{0}=P_{0}(2,1,3)$ be a point on L, and let $\vec{d}=\left[\begin{array}{lll}3 & -1 & -2\end{array}\right]^{T}$. Then $\overrightarrow{P_{0} Q}=\operatorname{proj}_{\vec{d}} \overrightarrow{P_{0} P}, \overrightarrow{0 Q}=\overrightarrow{0 P_{0}}+\overrightarrow{P_{0} Q}$, and the shortest distance from P to L is the length of $\overrightarrow{Q P}$, where $\overrightarrow{Q P}=\overrightarrow{P_{0} P}-\overrightarrow{P_{0} Q}$.

Example (continued)

$$
\overrightarrow{P_{0} P}=\left[\begin{array}{lll}
1 & 1 & -4
\end{array}\right]^{T}, \vec{d}=\left[\begin{array}{lll}
3 & -1 & -2
\end{array}\right]^{T} \text {. }
$$

$$
\overrightarrow{P_{0} Q}=\operatorname{proj}_{\vec{d}} \overrightarrow{P_{0} P}=\left(\frac{\overrightarrow{P_{0} P} \bullet \vec{d}}{\|\vec{d}\|^{2}}\right) \vec{d}=\frac{10}{14}\left[\begin{array}{r}
3 \\
-1 \\
-2
\end{array}\right]=\frac{1}{7}\left[\begin{array}{r}
15 \\
-5 \\
-10
\end{array}\right] .
$$

Example (continued)

$$
\overrightarrow{P_{0} P}=\left[\begin{array}{lll}
1 & 1 & -4
\end{array}\right]^{T}, \vec{d}=\left[\begin{array}{lll}
3 & -1 & -2
\end{array}\right]^{T} \text {. }
$$

$$
\overrightarrow{P_{0} Q}=\operatorname{proj}_{\vec{d}} \overrightarrow{P_{0} P}=\left(\frac{\overrightarrow{P_{0} P} \bullet \vec{d}}{\|\vec{d}\|^{2}}\right) \vec{d}=\frac{10}{14}\left[\begin{array}{r}
3 \\
-1 \\
-2
\end{array}\right]=\frac{1}{7}\left[\begin{array}{r}
15 \\
-5 \\
-10
\end{array}\right] .
$$

Therefore,

$$
\overrightarrow{O Q}=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]+\frac{1}{7}\left[\begin{array}{r}
15 \\
-5 \\
-10
\end{array}\right]=\frac{1}{7}\left[\begin{array}{r}
29 \\
2 \\
11
\end{array}\right],
$$

so $Q=Q\left(\frac{29}{7}, \frac{2}{7}, \frac{11}{7}\right)$.

Example (continued)

Finally, the shortest distance from $P(3,2,-1)$ to L is the length of $\overrightarrow{Q P}$, where

$$
\overrightarrow{Q P}=\overrightarrow{P_{0} P}-\overrightarrow{P_{0} Q}=\left[\begin{array}{r}
1 \\
1 \\
-4
\end{array}\right]-\frac{1}{7}\left[\begin{array}{r}
15 \\
-5 \\
-10
\end{array}\right]=\frac{2}{7}\left[\begin{array}{r}
-4 \\
6 \\
-9
\end{array}\right] .
$$

Example (continued)

Finally, the shortest distance from $P(3,2,-1)$ to L is the length of $\overrightarrow{Q P}$, where

$$
\overrightarrow{Q P}=\overrightarrow{P_{0} P}-\overrightarrow{P_{0} Q}=\left[\begin{array}{r}
1 \\
1 \\
-4
\end{array}\right]-\frac{1}{7}\left[\begin{array}{r}
15 \\
-5 \\
-10
\end{array}\right]=\frac{2}{7}\left[\begin{array}{r}
-4 \\
6 \\
-9
\end{array}\right] .
$$

Therefore the shortest distance from P to L is

$$
\|\overrightarrow{Q P}\|=\frac{2}{7} \sqrt{(-4)^{2}+6^{2}+(-9)^{2}}=\frac{2}{7} \sqrt{133}
$$

Example (continued)

Finally, the shortest distance from $P(3,2,-1)$ to L is the length of $\overrightarrow{Q P}$, where

$$
\overrightarrow{Q P}=\overrightarrow{P_{0} P}-\overrightarrow{P_{0} Q}=\left[\begin{array}{r}
1 \\
1 \\
-4
\end{array}\right]-\frac{1}{7}\left[\begin{array}{r}
15 \\
-5 \\
-10
\end{array}\right]=\frac{2}{7}\left[\begin{array}{r}
-4 \\
6 \\
-9
\end{array}\right] .
$$

Therefore the shortest distance from P to L is

$$
\|\overrightarrow{Q P}\|=\frac{2}{7} \sqrt{(-4)^{2}+6^{2}+(-9)^{2}}=\frac{2}{7} \sqrt{133 .}
$$

§4.2 Example 8 is similar.

Equations of Planes

Given a point P_{0} and a nonzero vector \vec{n}, there is a unique plane containing P_{0} and orthogonal to \vec{n}.

Definition

A nonzero vector \vec{n} is a normal vector to a plane if and only if $\vec{n} \bullet \vec{v}=0$ for every vector \vec{v} in the plane.

Equations of Planes

Given a point P_{0} and a nonzero vector \vec{n}, there is a unique plane containing P_{0} and orthogonal to \vec{n}.

Definition

A nonzero vector \vec{n} is a normal vector to a plane if and only if $\vec{n} \bullet \vec{v}=0$ for every vector \vec{v} in the plane.

Consider a plane containing a point P_{0} and orthogonal to vector \vec{n}, and let P be an arbitrary point on this plane.

Equations of Planes

Given a point P_{0} and a nonzero vector \vec{n}, there is a unique plane containing P_{0} and orthogonal to \vec{n}.

Definition

A nonzero vector \vec{n} is a normal vector to a plane if and only if $\vec{n} \bullet \vec{v}=0$ for every vector \vec{v} in the plane.

Consider a plane containing a point P_{0} and orthogonal to vector \vec{n}, and let P be an arbitrary point on this plane.
Then

$$
\vec{n} \bullet \overrightarrow{P_{0} P}=0
$$

Equations of Planes

Given a point P_{0} and a nonzero vector \vec{n}, there is a unique plane containing P_{0} and orthogonal to \vec{n}.

Definition

A nonzero vector \vec{n} is a normal vector to a plane if and only if $\vec{n} \bullet \vec{v}=0$ for every vector \vec{v} in the plane.

Consider a plane containing a point P_{0} and orthogonal to vector \vec{n}, and let P be an arbitrary point on this plane.
Then

$$
\vec{n} \bullet \overrightarrow{P_{0} P}=0
$$

or, equivalently,

$$
\vec{n} \bullet\left(\overrightarrow{0 P}-\overrightarrow{0 P_{0}}\right)=0
$$

and is a vector equation of the plane.

The vector equation

$$
\vec{n} \bullet\left(\overrightarrow{O P}-\overrightarrow{0 P_{0}}\right)=0
$$

can also be written as

$$
\vec{n} \bullet \overrightarrow{O P}=\vec{n} \bullet \overrightarrow{O P_{0}}
$$

The vector equation

$$
\vec{n} \bullet\left(\overrightarrow{O P}-\overrightarrow{0 P_{0}}\right)=0
$$

can also be written as

$$
\vec{n} \bullet \overrightarrow{O P}=\vec{n} \bullet \overrightarrow{0 P_{0}}
$$

Now suppose $P_{0}=P_{0}\left(x_{0}, y_{0}, z_{0}\right), P=P(x, y, z)$, and $\vec{n}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{T}$.

The vector equation

$$
\vec{n} \bullet\left(\overrightarrow{O P}-\overrightarrow{0 P_{0}}\right)=0
$$

can also be written as

$$
\vec{n} \bullet \overrightarrow{O P}=\vec{n} \bullet \overrightarrow{O P_{0}}
$$

Now suppose $P_{0}=P_{0}\left(x_{0}, y_{0}, z_{0}\right), P=P(x, y, z)$, and $\vec{n}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{T}$. Then the previous equation becomes

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \bullet\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \bullet\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]
$$

The vector equation

$$
\vec{n} \bullet\left(\overrightarrow{O P}-\overrightarrow{0 P_{0}}\right)=0
$$

can also be written as

$$
\vec{n} \bullet \overrightarrow{0 P}=\vec{n} \bullet \overrightarrow{0 P_{0}} .
$$

Now suppose $P_{0}=P_{0}\left(x_{0}, y_{0}, z_{0}\right), P=P(x, y, z)$, and $\vec{n}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{T}$. Then the previous equation becomes

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \bullet\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \bullet\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]
$$

SO

$$
a x+b y+c z=a x_{0}+b y_{0}+c z_{0},
$$

where $d=a x_{0}+b y_{0}+c z_{0}$ is simply a scalar.

The vector equation

$$
\vec{n} \bullet\left(\overrightarrow{O P}-\overrightarrow{0 P_{0}}\right)=0
$$

can also be written as

$$
\vec{n} \bullet \overrightarrow{0 P}=\vec{n} \bullet \overrightarrow{0 P_{0}} .
$$

Now suppose $P_{0}=P_{0}\left(x_{0}, y_{0}, z_{0}\right), P=P(x, y, z)$, and $\vec{n}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{T}$. Then the previous equation becomes

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \bullet\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \bullet\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]
$$

SO

$$
a x+b y+c z=a x_{0}+b y_{0}+c z_{0}
$$

where $d=a x_{0}+b y_{0}+c z_{0}$ is simply a scalar.
A scalar equation of the plane has the form

$$
a x+b y+c z=d, \text { where } a, b, c, d \in \mathbb{R} .
$$

Example

Find an equation of the plane containing $P_{0}(1,-1,0)$ and orthogonal to $\vec{n}=\left[\begin{array}{lll}-3 & 5 & 2\end{array}\right]^{T}$.

Example

Find an equation of the plane containing $P_{0}(1,-1,0)$ and orthogonal to $\vec{n}=\left[\begin{array}{lll}-3 & 5 & 2\end{array}\right]^{T}$.

Solution.

A vector equation of this plane is

$$
\left[\begin{array}{r}
-3 \\
5 \\
2
\end{array}\right] \bullet\left[\begin{array}{c}
x-1 \\
y+1 \\
z
\end{array}\right]=0
$$

Example

Find an equation of the plane containing $P_{0}(1,-1,0)$ and orthogonal to $\vec{n}=\left[\begin{array}{lll}-3 & 5 & 2\end{array}\right]^{T}$.

Solution.

A vector equation of this plane is

$$
\left[\begin{array}{r}
-3 \\
5 \\
2
\end{array}\right] \bullet\left[\begin{array}{c}
x-1 \\
y+1 \\
z
\end{array}\right]=0
$$

A scalar equation of this plane is

$$
-3 x+5 y+2 z=-3(1)+5(-1)+2(0)=-8
$$

i.e., the plane has scalar equation

$$
-3 x+5 y+2 z=-8
$$

§4.2 Example 11: Two solutions to the problem of finding the shortest distance from a point to a plane.
§4.2 Example 11: Two solutions to the problem of finding the shortest distance from a point to a plane.

Example

Find the shortest distance from the point $P(2,3,0)$ to the plane with equation $5 x+y+z=-1$, and find the point Q on the plane that is closest to P.
§4.2 Example 11: Two solutions to the problem of finding the shortest distance from a point to a plane.

Example

Find the shortest distance from the point $P(2,3,0)$ to the plane with equation $5 x+y+z=-1$, and find the point Q on the plane that is closest to P.

Solution (like the first solution to $\S 4.2$ Example 11).

Pick an arbitrary point P_{0} on the plane.
Then $\overrightarrow{Q P}=\operatorname{proj}_{\vec{n}} \overrightarrow{P_{0} P}$,
$\|\overrightarrow{Q P}\|$ is the shortest distance, and $\overrightarrow{O Q}=\overrightarrow{0 P}-\overrightarrow{Q P}$.
§4.2 Example 11: Two solutions to the problem of finding the shortest distance from a point to a plane.

Example

Find the shortest distance from the point $P(2,3,0)$ to the plane with equation $5 x+y+z=-1$, and find the point Q on the plane that is closest to P.

Solution (like the first solution to $\S 4.2$ Example 11).

Pick an arbitrary point P_{0} on the plane.
Then $\overrightarrow{Q P}=\operatorname{proj}_{\vec{n}} \overrightarrow{P_{0} P}$,
$\|\overrightarrow{Q P}\|$ is the shortest distance, and $\overrightarrow{O Q}=\overrightarrow{0 P}-\overrightarrow{Q P}$.

$$
\vec{n}=\left[\begin{array}{lll}
5 & 1 & 1
\end{array}\right]^{T} .
$$

§4.2 Example 11: Two solutions to the problem of finding the shortest distance from a point to a plane.

Example

Find the shortest distance from the point $P(2,3,0)$ to the plane with equation $5 x+y+z=-1$, and find the point Q on the plane that is closest to P.

Solution (like the first solution to $\S 4.2$ Example 11).

Pick an arbitrary point P_{0} on the plane.
Then $\overrightarrow{Q P}=\operatorname{proj}_{\vec{n}} \overrightarrow{P_{0} P}$,
$\|\overrightarrow{Q P}\|$ is the shortest distance, and $\overrightarrow{O Q}=\overrightarrow{0 P}-\overrightarrow{Q P}$.
$\vec{n}=\left[\begin{array}{lll}5 & 1 & 1\end{array}\right]^{T}$. Choose $P_{0}=P_{0}(0,0,-1)$.
§4.2 Example 11: Two solutions to the problem of finding the shortest distance from a point to a plane.

Example

Find the shortest distance from the point $P(2,3,0)$ to the plane with equation $5 x+y+z=-1$, and find the point Q on the plane that is closest to P.

Solution (like the first solution to $\S 4.2$ Example 11).

Pick an arbitrary point P_{0} on the plane.
Then $\overrightarrow{Q P}=\operatorname{proj}_{\vec{n}} \overrightarrow{P_{0} P}$,
$\|\overrightarrow{Q P}\|$ is the shortest distance, and $\overrightarrow{O Q}=\overrightarrow{0 P}-\overrightarrow{Q P}$.
$\vec{n}=\left[\begin{array}{lll}5 & 1 & 1\end{array}\right]^{T}$. Choose $P_{0}=P_{0}(0,0,-1)$.
Then $\overrightarrow{P_{0} P}=\left[\begin{array}{lll}2 & 3 & 1\end{array}\right]^{T}$.

Example (continued)

$$
\begin{aligned}
& \overrightarrow{P_{0} P}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]^{T} . \\
& \vec{n}=\left[\begin{array}{lll}
5 & 1 & 1
\end{array}\right]^{T} .
\end{aligned}
$$

Example (continued)

Example (continued)

$$
\begin{aligned}
& \overrightarrow{P_{0} P}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]^{T} . \\
& \vec{n}=\left[\begin{array}{lll}
5 & 1 & 1
\end{array}\right]^{T}
\end{aligned}
$$

$$
\overrightarrow{Q P}=\operatorname{proj}_{\vec{n}} \overrightarrow{P_{0} P}=\left(\frac{\overrightarrow{P_{0} P} \bullet \vec{n}}{\|\vec{n}\|^{2}}\right) \vec{n}=\frac{14}{27}\left[\begin{array}{ccc}
5 & 1 & 1
\end{array}\right]^{T}
$$

Since $\|\overrightarrow{Q P}\|=\frac{14}{27} \sqrt{27}=\frac{14 \sqrt{3}}{9}$, the shortest distance from P to the plane is $\frac{14 \sqrt{3}}{9}$.

Example (continued)

$$
\begin{aligned}
& \overrightarrow{P_{0} P}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]^{T} . \\
& \vec{n}=\left[\begin{array}{lll}
5 & 1 & 1
\end{array}\right]^{T}
\end{aligned}
$$

$$
\overrightarrow{Q P}=\operatorname{proj}_{\vec{n}} \overrightarrow{P_{0} P}=\left(\frac{\overrightarrow{P_{0} P} \bullet \vec{n}}{\|\vec{n}\|^{2}}\right) \vec{n}=\frac{14}{27}\left[\begin{array}{ccc}
5 & 1 & 1
\end{array}\right]^{T}
$$

Since $\|\overrightarrow{Q P}\|=\frac{14}{27} \sqrt{27}=\frac{14 \sqrt{3}}{9}$, the shortest distance from P to the plane is $\frac{14 \sqrt{3}}{9}$.
To find Q, we have

$$
\begin{aligned}
\overrightarrow{O Q}=\overrightarrow{0 P}-\overrightarrow{Q P} & =\left[\begin{array}{lll}
2 & 3 & 0
\end{array}\right]^{T}-\frac{14}{27}\left[\begin{array}{lll}
5 & 1 & 1
\end{array}\right]^{T} \\
& =\frac{1}{27}\left[\begin{array}{lll}
-16 & 67 & -14
\end{array}\right]^{T}
\end{aligned}
$$

Example (continued)

$$
\begin{aligned}
& \overrightarrow{Q P}=\operatorname{proj}_{\vec{n}} \overrightarrow{P_{0} P}=\left(\frac{\overrightarrow{P_{0} P} \cdot \vec{n}}{\|\vec{n}\|^{2}}\right) \vec{n}=\frac{14}{27}\left[\begin{array}{lll}
5 & 1 & 1
\end{array}\right]^{\top} .
\end{aligned}
$$

Since $\|\overrightarrow{Q P}\|=\frac{14}{27} \sqrt{27}=\frac{14 \sqrt{3}}{9}$, the shortest distance from P to the plane is $\frac{14 \sqrt{3}}{9}$.
To find Q, we have

$$
\begin{aligned}
\overrightarrow{O Q}=\overrightarrow{O P}-\overrightarrow{Q P} & =\left[\begin{array}{lll}
2 & 3 & 0
\end{array}\right]^{T}-\frac{14}{27}\left[\begin{array}{lll}
5 & 1 & 1
\end{array}\right]^{T} \\
& =\frac{1}{27}\left[\begin{array}{lll}
-16 & 67 & -14
\end{array}\right]^{T} .
\end{aligned}
$$

Therefore $Q=Q\left(-\frac{16}{27}, \frac{67}{27},-\frac{14}{27}\right)$.

The Cross Product

Definition

Let $\vec{u}=\left[\begin{array}{lll}x_{1} & y_{1} & z_{1}\end{array}\right]^{T}$ and $\vec{v}=\left[\begin{array}{lll}x_{2} & y_{2} & z_{2}\end{array}\right]^{T}$. Then

$$
\vec{u} \times \vec{v}=\left[\begin{array}{c}
y_{1} z_{2}-z_{1} y_{2} \\
-\left(x_{1} z_{2}-z_{1} x_{2}\right) \\
x_{1} y_{2}-y_{1} x_{2}
\end{array}\right] .
$$

The Cross Product

Definition

Let $\vec{u}=\left[\begin{array}{lll}x_{1} & y_{1} & z_{1}\end{array}\right]^{T}$ and $\vec{v}=\left[\begin{array}{lll}x_{2} & y_{2} & z_{2}\end{array}\right]^{T}$. Then

$$
\vec{u} \times \vec{v}=\left[\begin{array}{c}
y_{1} z_{2}-z_{1} y_{2} \\
-\left(x_{1} z_{2}-z_{1} x_{2}\right) \\
x_{1} y_{2}-y_{1} x_{2}
\end{array}\right] .
$$

Note. $\vec{u} \times \vec{v}$ is a vector that is orthogonal to both \vec{u} and \vec{v}.

The Cross Product

Definition

Let $\vec{u}=\left[\begin{array}{lll}x_{1} & y_{1} & z_{1}\end{array}\right]^{T}$ and $\vec{v}=\left[\begin{array}{lll}x_{2} & y_{2} & z_{2}\end{array}\right]^{T}$. Then

$$
\vec{u} \times \vec{v}=\left[\begin{array}{c}
y_{1} z_{2}-z_{1} y_{2} \\
-\left(x_{1} z_{2}-z_{1} x_{2}\right) \\
x_{1} y_{2}-y_{1} x_{2}
\end{array}\right] .
$$

Note. $\vec{u} \times \vec{v}$ is a vector that is orthogonal to both \vec{u} and \vec{v}.
A mnemonic device:

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & x_{1} & x_{2} \\
\vec{j} & y_{1} & y_{2} \\
\vec{k} & z_{1} & z_{2}
\end{array}\right|, \text { where } \vec{i}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \vec{j}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \vec{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

Theorem (§4.2 Theorem 5)
Let $\vec{u}, \vec{v} \in \mathbb{R}^{3}$.

Theorem (§4.2 Theorem 5)
Let $\vec{u}, \vec{v} \in \mathbb{R}^{3}$.
(1) $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}.

Theorem (§4.2 Theorem 5)
Let $\vec{u}, \vec{v} \in \mathbb{R}^{3}$.
(1) $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}.
(2) If \vec{u} and \vec{v} are both nonzero, then $\vec{u} \times \vec{v}=\overrightarrow{0}$ if and only if \vec{u} and \vec{v} are parallel.

Example

Find all vectors orthogonal to both $\vec{u}=\left[\begin{array}{lll}-1 & -3 & 2\end{array}\right]^{T}$ and $\vec{v}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{T}$.
(We previously solved this using the dot product.)

Example

Find all vectors orthogonal to both $\vec{u}=\left[\begin{array}{lll}-1 & -3 & 2\end{array}\right]^{T}$ and $\vec{v}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{T}$.
(We previously solved this using the dot product.)

Solution.

$$
\vec{u} \times \vec{v}=\left|\begin{array}{rrr}
\vec{i} & -1 & 0 \\
\vec{j} & -3 & 1 \\
\vec{k} & 2 & 1
\end{array}\right|=-5 \vec{i}+\vec{j}-\vec{k}=\left[\begin{array}{r}
-5 \\
1 \\
-1
\end{array}\right] .
$$

Example

Find all vectors orthogonal to both $\vec{u}=\left[\begin{array}{lll}-1 & -3 & 2\end{array}\right]^{T}$ and $\vec{v}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{T}$.
(We previously solved this using the dot product.)

Solution.

$$
\vec{u} \times \vec{v}=\left|\begin{array}{rrr}
\vec{i} & -1 & 0 \\
\vec{j} & -3 & 1 \\
\vec{k} & 2 & 1
\end{array}\right|=-5 \vec{i}+\vec{j}-\vec{k}=\left[\begin{array}{r}
-5 \\
1 \\
-1
\end{array}\right] .
$$

Any scalar multiple of $\vec{u} \times \vec{v}$ is also orthogonal to both \vec{u} and \vec{v}, so

$$
t\left[\begin{array}{r}
-5 \\
1 \\
-1
\end{array}\right], t \in \mathbb{R},
$$

gives all vectors orthogonal to both \vec{u} and \vec{v}. (Compare this with our earlier answer.)
§4.2 Example 13 shows how to find an equation of a plane that contains three non-colinear points.
§4.2 Example 14 shows how to find the shortest distance between skew lines, i.e., lines that are not parallel and do not intersect.

Distance between skew lines

Example

Given two lines

$$
L_{1}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
3 \\
1 \\
-1
\end{array}\right]+s\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \text { and } L_{2}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

A. Find the shortest distance between L_{1} and L_{2}.
B. Find the shortest distance between L_{1} and L_{2}, and find the points P on L_{1} and Q on L_{2} that are closest together.

Distance between skew lines

Example

Given two lines

$$
L_{1}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
3 \\
1 \\
-1
\end{array}\right]+s\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \text { and } L_{2}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

A. Find the shortest distance between L_{1} and L_{2}.
B. Find the shortest distance between L_{1} and L_{2}, and find the points P on L_{1} and Q on L_{2} that are closest together.

Solution A.

Choose $P_{1}(3,1,-1)$ on L_{1} and $P_{2}(1,2,0)$ on L_{2}.
Let $\vec{d}_{1}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$ and $\vec{d}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ denote direction vectors
for L_{1} and L_{2}, respectively.

Example (continued)

$$
\vec{d}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \vec{d}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

The shortest distance between L_{1} and L_{2} is the length of the projection of $\overrightarrow{P_{1} P_{2}}$ onto $\vec{n}=\vec{d}_{1} \times \vec{d}_{2}$.

Example (continued)

$$
\vec{d}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \vec{d}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

The shortest distance between L_{1} and L_{2} is the length of the projection of $\overrightarrow{P_{1} P_{2}}$ onto $\vec{n}=\vec{d}_{1} \times \vec{d}_{2}$.

$$
\overrightarrow{P_{1} P_{2}}=\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right] \text { and } \vec{n}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \times\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{r}
2 \\
-3 \\
-1
\end{array}\right]
$$

Example (continued)

$$
\vec{d}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \vec{d}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

The shortest distance between L_{1} and L_{2} is the length of the projection of $\overrightarrow{P_{1} P_{2}}$ onto $\vec{n}=\vec{d}_{1} \times \vec{d}_{2}$.

$$
\begin{gathered}
\overrightarrow{P_{1} P_{2}}=\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right] \text { and } \vec{n}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \times\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{r}
2 \\
-3 \\
-1
\end{array}\right] \\
\operatorname{proj}_{\vec{n}} \overrightarrow{P_{1} P_{2}}=\left(\frac{\overrightarrow{P_{1} P_{2}} \bullet \vec{n}}{\|\vec{n}\|^{2}}\right) \vec{n}, \text { and }\left\|\operatorname{proj}_{\vec{n}} \overrightarrow{P_{1} P_{2}}\right\|=\frac{\left|\overrightarrow{P_{1} P_{2}} \bullet \vec{n}\right|}{\|\vec{n}\|} .
\end{gathered}
$$

Example (continued)

$$
\vec{d}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \vec{d}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

The shortest distance between L_{1} and L_{2} is the length of the projection of $\overrightarrow{P_{1} P_{2}}$ onto $\vec{n}=\vec{d}_{1} \times \vec{d}_{2}$.

$$
\begin{gathered}
\overrightarrow{P_{1} P_{2}}=\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right] \text { and } \vec{n}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \times\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{r}
2 \\
-3 \\
-1
\end{array}\right] \\
\operatorname{proj}_{\vec{n}} \overrightarrow{P_{1} P_{2}}=\left(\frac{\overrightarrow{P_{1} P_{2}} \bullet \vec{n}}{\|\vec{n}\|^{2}}\right) \vec{n}, \text { and }\left\|\operatorname{proj}_{\vec{n}} \overrightarrow{P_{1} P_{2}}\right\|=\frac{\left|\overrightarrow{P_{1} P_{2}} \bullet \vec{n}\right|}{\|\vec{n}\|} .
\end{gathered}
$$

Therefore, the shortest distance between L_{1} and L_{2} is $\frac{|-8|}{\sqrt{14}}=\frac{4}{7} \sqrt{14}$.

Example (continued)

Solution B.

$$
\begin{aligned}
& \vec{d}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \vec{d}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] ; \\
& \overrightarrow{O P}=\left[\begin{array}{c}
3+s \\
1+s \\
-1-s
\end{array}\right] \text { for some } s \in \mathbb{R} ; \\
& \overrightarrow{O Q}=\left[\begin{array}{c}
1+t \\
2 \\
2 t
\end{array}\right] \text { for some } t \in \mathbb{R} .
\end{aligned}
$$

Example (continued)

Solution B.

$$
\begin{aligned}
& \vec{d}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \vec{d}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] \\
& \overrightarrow{O P}=\left[\begin{array}{c}
3+s \\
1+s \\
-1-s
\end{array}\right] \text { for some } s \in \mathbb{R} ; \\
& \overrightarrow{O Q}=\left[\begin{array}{c}
1+t \\
2 \\
2 t
\end{array}\right] \text { for some } t \in \mathbb{R}
\end{aligned}
$$

Now $\overrightarrow{P Q}=\left[\begin{array}{ccc}-2-s+t & 1-s & 1+s+2 t\end{array}\right]^{T}$ is orthogonal to both L_{1} and L_{2}, so

$$
\overrightarrow{P Q} \bullet \vec{d}_{1}=0 \text { and } \overrightarrow{P Q} \bullet \vec{d}_{2}=0
$$

Example (continued)

Solution B.

$$
\begin{aligned}
& \vec{d}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \vec{d}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] ; \\
& \overrightarrow{O P}=\left[\begin{array}{c}
3+s \\
1+s \\
-1-s
\end{array}\right] \text { for some } s \in \mathbb{R} ; \\
& \overrightarrow{O Q}=\left[\begin{array}{c}
1+t \\
2 \\
2 t
\end{array}\right] \text { for some } t \in \mathbb{R} .
\end{aligned}
$$

Now $\overrightarrow{P Q}=\left[\begin{array}{lll}-2-s+t & 1-s & 1+s+2 t\end{array}\right]^{T}$ is orthogonal to both L_{1} and L_{2}, so

$$
\overrightarrow{P Q} \bullet \vec{d}_{1}=0 \text { and } \overrightarrow{P Q} \bullet \vec{d}_{2}=0
$$

i.e.,

$$
\begin{aligned}
-2-3 s-t & =0 \\
s+5 t & =0
\end{aligned}
$$

Example (continued)

Solution B.

$$
\begin{aligned}
& \vec{d}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \vec{d}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] \\
& \overrightarrow{O P}=\left[\begin{array}{c}
3+s \\
1+s \\
-1-s
\end{array}\right] \text { for some } s \in \mathbb{R} ; \\
& \overrightarrow{O Q}=\left[\begin{array}{c}
1+t \\
2 \\
2 t
\end{array}\right] \text { for some } t \in \mathbb{R}
\end{aligned}
$$

Now $\overrightarrow{P Q}=\left[\begin{array}{lll}-2-s+t & 1-s & 1+s+2 t\end{array}\right]^{T}$ is orthogonal to both L_{1} and L_{2}, so

$$
\overrightarrow{P Q} \bullet \vec{d}_{1}=0 \text { and } \overrightarrow{P Q} \bullet \vec{d}_{2}=0
$$

i.e.,

$$
\begin{aligned}
-2-3 s-t & =0 \\
s+5 t & =0
\end{aligned}
$$

This system has unique solution $s=-\frac{5}{7}$ and $t=\frac{1}{7}$.

Example (continued)

Solution B.

$$
\begin{aligned}
& \vec{d}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \vec{d}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] ; \\
& \overrightarrow{O P}=\left[\begin{array}{c}
3+s \\
1+s \\
-1-s
\end{array}\right] \text { for some } s \in \mathbb{R} ; \\
& \overrightarrow{O Q}=\left[\begin{array}{c}
1+t \\
2 \\
2 t
\end{array}\right] \text { for some } t \in \mathbb{R} .
\end{aligned}
$$

Now $\overrightarrow{P Q}=\left[\begin{array}{lll}-2-s+t & 1-s & 1+s+2 t\end{array}\right]^{T}$ is orthogonal to both L_{1} and L_{2}, so

$$
\overrightarrow{P Q} \bullet \vec{d}_{1}=0 \text { and } \overrightarrow{P Q} \bullet \vec{d}_{2}=0
$$

i.e.,

$$
\begin{aligned}
-2-3 s-t & =0 \\
s+5 t & =0
\end{aligned}
$$

This system has unique solution $s=-\frac{5}{7}$ and $t=\frac{1}{7}$. Therefore,

$$
P=P\left(\frac{16}{7}, \frac{2}{7},-\frac{2}{7}\right) \text { and } Q=Q\left(\frac{8}{7}, 2, \frac{2}{7}\right)
$$

Example (continued)

The shortest distance between L_{1} and L_{2} is $\|\overrightarrow{P Q}\|$. Since

$$
P=P\left(\frac{16}{7}, \frac{2}{7},-\frac{2}{7}\right) \text { and } Q=Q\left(\frac{8}{7}, 2, \frac{2}{7}\right),
$$

Example (continued)

The shortest distance between L_{1} and L_{2} is $\|\overrightarrow{P Q}\|$. Since

$$
\begin{aligned}
& P=P\left(\frac{16}{7}, \frac{2}{7},-\frac{2}{7}\right) \text { and } Q=Q\left(\frac{8}{7}, 2, \frac{2}{7}\right), \\
& \overrightarrow{P Q}=\frac{1}{7}\left[\begin{array}{r}
8 \\
14 \\
2
\end{array}\right]-\frac{1}{7}\left[\begin{array}{r}
16 \\
2 \\
-2
\end{array}\right]=\frac{1}{7}\left[\begin{array}{r}
-8 \\
12 \\
4
\end{array}\right],
\end{aligned}
$$

Example (continued)

The shortest distance between L_{1} and L_{2} is $\|\overrightarrow{P Q}\|$. Since

$$
\begin{aligned}
& P=P\left(\frac{16}{7}, \frac{2}{7},-\frac{2}{7}\right) \text { and } Q=Q\left(\frac{8}{7}, 2, \frac{2}{7}\right), \\
& \overrightarrow{P Q}=\frac{1}{7}\left[\begin{array}{r}
8 \\
14 \\
2
\end{array}\right]-\frac{1}{7}\left[\begin{array}{r}
16 \\
2 \\
-2
\end{array}\right]=\frac{1}{7}\left[\begin{array}{r}
-8 \\
12 \\
4
\end{array}\right],
\end{aligned}
$$

and

$$
\|\overrightarrow{P Q}\|=\frac{1}{7} \sqrt{224}=\frac{4}{7} \sqrt{14}
$$

Example (continued)

The shortest distance between L_{1} and L_{2} is $\|\overrightarrow{P Q}\|$. Since

$$
\begin{aligned}
& P=P\left(\frac{16}{7}, \frac{2}{7},-\frac{2}{7}\right) \text { and } Q=Q\left(\frac{8}{7}, 2, \frac{2}{7}\right), \\
& \overrightarrow{P Q}=\frac{1}{7}\left[\begin{array}{r}
8 \\
14 \\
2
\end{array}\right]-\frac{1}{7}\left[\begin{array}{r}
16 \\
2 \\
-2
\end{array}\right]=\frac{1}{7}\left[\begin{array}{r}
-8 \\
12 \\
4
\end{array}\right],
\end{aligned}
$$

and

$$
\|\overrightarrow{P Q}\|=\frac{1}{7} \sqrt{224}=\frac{4}{7} \sqrt{14} .
$$

Therefore the shortest distance between L_{1} and L_{2} is $\frac{4}{7} \sqrt{14}$.

