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§4.1 — Vectors and Lines
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Scalar quantities vs. Vector quantities
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Scalar quantities vs. Vector quantities

@ scalar quantities have only magnitude; e.g. time, temperature.
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Scalar quantities vs. Vector quantities

@ scalar quantities have only magnitude; e.g. time, temperature.

@ vector quantities have both magnitude and direction; e.g. force, wind
velocity.
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Scalar quantities vs. Vector quantities

@ scalar quantities have only magnitude; e.g. time, temperature.

@ vector quantities have both magnitude and direction; e.g. force, wind
velocity.

Two vector quantities are equal if and only if they have the same
magnitude and direction.
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Geometric Vectors

Let A and B be two points in R? or R3.

y
B o /@ is the geometric vector from A to B.
e A is the tail of /ﬁ
e B is the tip of /ﬁ
e the magnitude of /ﬁ is its length, and is
0 denoted ||/ﬁ||

a

Section 4.1 Page 4/31 |



y
—+ B

o AB is the vector from A(1,0) to B(2,2).
o CD is the vector from C(-1,-1)

Dy to D(0,1).

% 0 hd %
A X
C 1 ° ,@ = @ because the vectors have
the same length and direction.
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Definition
A vector is in standard position if its tail is at the origin.

We co-ordinatize vectors by putting them in standard position, and then
identifying them with their tips.

Thus AB = 0P where P = P(1,2), and we write 0P = [ ; ] — AB.

0P is the position vector for P(1,2).
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X

More generally, if P(x,y, z) is a point in R3, then 0? = | y | isthe
z

position vector for P.
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X

More generally, if P(x,y, z) is a point in R3, then 0? = | y | isthe
z

position vector for P.

If we aren’t concerned with the locations of the tail and tip, we simply
X

write V.= | y
z
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Theorem (§4.1 Theorem 1)

X X1
Letv= |y | andw= | y1 | be vectors in R3. Then
z Z1
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Theorem (§4.1 Theorem 1)

X X1
Letv= |y | andw= | y1 | be vectors in R3. Then
z Z1

Q@ v=wifandonlyifx=x1, y =y, and z = z.
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Theorem (§4.1 Theorem 1)

X X1
Letv= |y | andw= | y1 | be vectors in R3. Then
z Z1

Q@ v=wifandonlyifx=x1, y =y, and z = z.

Q ||V]| = VX2 +y? + 22
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Theorem (§4.1 Theorem 1)

X X1
Letv= |y | andw= | y1 | be vectors in R3. Then
z Z1

Q@ v=wifandonlyifx=x1, y =y, and z = z.

Q ||V]| = VX2 + y2 + 22

© vV =0 ifand only if ||V]| = 0.

Ll
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Theorem (§4.1 Theorem 1)

X X1
Letv= |y | andw= | y1 | be vectors in R3. Then
z Z1

Q@ v=wifandonlyifx=x1, y =y, and z = z.

Q ||V]| = VX2 + y2 + 22
© v =20 ifand only if ||V|| = 0.

© For any scalar a, |

Ll

av|| = a - ||v]]-
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Theorem (§4.1 Theorem 1)

X X1
Letv= |y | andw= | y1 | be vectors in R3. Then
z Z1

Q@ v=wifandonlyifx=x1, y =y, and z = z.

Q ||V]| = X2+ y2 + 22
© v =20 ifand only if ||V|| = 0.

© For any scalar a, |

Ll

av|| = a - ||v]]-

Analogous results hold for vV, w €

In this case, ||V|| = /X2 + y2.
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Example

3 —6
Letﬁ:[ ],ci’: —1 |,and —2g=| 2
— 4
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Example

3 3 —6
Letﬁ:[ 4 ],ci’: —1 |, and —2q = 2 |,
2 4

Then
1Pl = /(=3)*+42 = V9 +16 =
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Example

3 3 —6
Letﬁ:[ 4 ],ci’: —1 |, and —2q = 2 |,
2 4

Then
11| = +/(—3)2 +42 = 9+ 16 = 5,

1611 = /()2 + (~1)2 +(-2)2 = VO F T+ 4 = V14,
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Example

324+ 42 =

—6

,and —2g=| 2 |,

4

vV9+16 =5,

3
Let 5= [ _43 ] g= | -1
-2
Then
1] = /(=
g1l = /(3)2 + (-
and
|| — 24|

24 (22 =9 +1+4=14,

\/(—6)2+22+42
V36+ 4116
V56 = V4 x 14
2v14 = 2/|g]].
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Intrinsic Description of Vectors
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Intrinsic Description of Vectors

@ vector equality: same length and direction.
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Intrinsic Description of Vectors

@ vector equality: same length and direction.
@ 0: the vector with length zero and no direction.
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Intrinsic Description of Vectors

@ vector equality: same length and direction.
e 0: the vector with length zero and no direction.
e scalar multiplication: if V# 0 and a € R, a # 0, then av has length
|al - [[v]| and
» the same direction as V if a > 0;
» direction opposite to V if a < 0.
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Intrinsic Description of Vectors

@ vector equality: same length and direction.
@ 0: the vector with length zero and no direction.

e scalar multiplication: if V# 0 and a € R, a # 0, then av has length
|al - [[v]| and
» the same direction as V if a > 0;
» direction opposite to V if a < 0.
e addition: &'+ V is the diagonal of the parallelogram defined by & and
v, and having the same tail as & and V.
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Intrinsic Description of Vectors

@ vector equality: same length and direction.
e 0: the vector with length zero and no direction.
e scalar multiplication: if V# 0 and a € R, a # 0, then av has length
|al - [[v]| and
> the same direction as v if a > 0;
» direction opposite to V if a < 0.
e addition: &'+ V is the diagonal of the parallelogram defined by & and
v, and having the same tail as & and V.

v

parallelogram law
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If we have a coordinate system, then:
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If we have a coordinate system, then:

@ vector equality: &= vV if and only if & and V are equal as matrices.
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If we have a coordinate system, then:

@ vector equality: &= vV if and only if & and V are equal as matrices.

@ 0: has all coordinates equal to zero.
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If we have a coordinate system, then:

@ vector equality: &= vV if and only if & and V are equal as matrices.
@ 0: has all coordinates equal to zero.

@ scalar multiplication: av is obtained from v by multiplying each entry
of vV by a (matrix scalar multiplication).

Section 4.1 Page 11/31 |



If we have a coordinate system, then:

@ vector equality: &= vV if and only if & and V are equal as matrices.
@ 0: has all coordinates equal to zero.

@ scalar multiplication: av is obtained from v by multiplying each entry
of vV by a (matrix scalar multiplication).

@ addition: &+ V is represented by the matrix sum of the columns &
and V.

Section 4.1 Page 11/31 |



Tip-to-Tail Method for Vector Addition

For points A, B and C,

AB + BC = AC.
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Example (§4.1 Example 2)

Show that the diagonals of any parallelogram bisect each other.
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Example (§4.1 Example 2)

Show that the diagonals of any parallelogram bisect each other.
Denote the parallelogram by its vertices, ABCD.

e Let M denote the midpoint
of R

Then W = W
o |t novxﬁ;lffices to show
that BM = MD.
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Example (§4.1 Example 2)

Show that the diagonals of any parallelogram bisect each other.
Denote the parallelogram by its vertices, ABCD.

e Let M denote the midpoint
of R
Then W = W

ot novxﬁ;lffices to show
that BM = MD.
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Example (§4.1 Example 2)

Show that the diagonals of any parallelogram bisect each other.
Denote the parallelogram by its vertices, ABCD.

C

e Let M denote the midpoint
of R
Then m = W

ot novxﬂjfﬁces to show
that BM = MD.

BM = BA + AM = CD + MC = MC + CD = MD.

— ?
Since BM = MD, these vectors have the same magnitude and direction,
implying that M is the midpoint of @
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Example (§4.1 Example 2)

Show that the diagonals of any parallelogram bisect each other.
Denote the parallelogram by its vertices, ABCD.

C

e Let M denote the midpoint
of R
Then m = W

ot now_sgfﬁces to show
that BM = MD.

BM = BA + AM = CD + MC = MC + CD = MD.

— ?
Since BM = MD, these vectors have the same magnitude and direction,
implying that M is the midpoint of @

Therefore, the diagonals of ABCD bisect each other.
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Vector Subtraction
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Vector Subtraction

o If we have a coordinate system, then subtract the vectors as you
would subtract matrices.
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Vector Subtraction J

o If we have a coordinate system, then subtract the vectors as you
would subtract matrices.

@ For the intrinsic description:

U —V =0+ (—V) and is the diagonal from the tip of V to the tip of &
in the parallelogram defined by & and V.
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Theorem (§4.1 Theorem 3)
Let Pi(x1,y1,21) and Py(x2, y2, z2) be two points. Then
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Theorem (§4.1 Theorem 3)
Let Pi(x1,y1,21) and Py(x2, y2, z2) be two points. Then

o
X — X
2 — X1
PiP= 1| y2—
n—7
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Theorem (§4.1 Theorem 3)
Let Pi(x1,y1,21) and Pa(x2, y2,22) be two points. Then

o
X2 — X
- 2 — X1
PiPa= | y2—y1
-2

@ The distance between P; and P is

\/(X2 =x1)2+(y2 = y1)? + (22 — z1)%.
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Theorem (§4.1 Theorem 3)
Let Pi(x1,y1,21) and Py(x2, y2, z2) be two points. Then

o
X — X
2 — X1
PiP= 1| y2—
n—7

@ The distance between P; and P» is

\/(Xz —x1)2+ (2 —»1)?> + (22 — 2)2.

Proof.
e I — = S S S
P> 0Py + P1P, =0P;, so P1P, =0P, — 0P4,
and the distance between P; and P, is ||P1P2]|.
0 Py L]
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Example
For P(1,-1,3) and Q(3,1,0)

3—-1 2
()
0-3 -3

and the distance between P and Q is ||@H = /22 +22 + (-3)2 = V1T7.
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Example
For P(1,-1,3) and Q(3,1,0)

3.1 2
PO=|1-(-1) | =] 2
0-3 -3

and the distance between P and Q is ||@|| = /22 +22 + (-3)2 = V1T7.

Definition
A unit vector is a vector of length one.
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Example
For P(1,—1,3) and Q(3,1,0)

3—-1 2
()
0-3 -3

and the distance between P and Q is ||@|| = /22 +22 + (-3)2 = V1T7.

Definition

A unit vector is a vector of length one.

Example

1L

, are examples of unit vectors.

SIS
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-1
V= 3 | is not a unit vector, since ||V|| = V14.
2

Section 4.1 Page 17/31



=1
V= 3 | is not a unit vector, since ||V|| = v14. However,
2

=1
Via

. 1 . 3
bT=—VvV=| —
V14 Vo
Via

is a unit vector in the same direction as Vv,
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Example

-1
3 | is not a unit vector, since ||V|| = v14. However,
2

<U
I

—1

V14
3

f=—v=| 2%
V14 v
Via

is a unit vector in the same direction as Vv, i.e.,

\7||=i\/ﬁ:1.

1
HLWZﬁH WiTT
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Example (§4.1 Example 4)
If v+ 0, then

—

—

-V

is a unit vector in the same direction as V.

=i
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Example
Find the point, M, that is midway between P;(—1,—4,3) and P»(5,0, —3).

Section 4.1 Page 19/31 |



Find the point, M, that is midway between P;(—1,—4,3) and P»(5,0, —3).

Example
Pl Nﬂ\
1 /// P2

Page 19/31
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Example
Find the point, M, that is midway between P;(—1,—4,3) and P»(5,0, —3).

P M
I,I ’// P2
o
0 _ ;
— s 1 = 1 9
OM =0P; + PPM =0P; + =P1P, = —4 P = 4
2 2
| 3 ] —6
[ —1 ] 3 2
= -4 | + 2 | =] =2
| 3 ] -3 0
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Example
Find the point, M, that is midway between P;(—1, —4,3) and P»(5,0, —3).

P M
I,I ’// P2
o
0 _ ;
— s 1 — 1 9
OM =0P; + PPM =0P; + =P1P, = —4 P = 4
2 2
| 3 ] —6
[ —1 ] 3 2
= -4 | + 2 | =] =2
| 3 ] -3 0

Therefore M = M(2,-2,0).

Page 19/31
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Example (§4.1 Exercise 15)
Find the two points trisecting the segment between P(2,3,5) and Q(8,—6,2).
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Example (§4.1 Exercise 15)
Find the two points trisecting the segment between P(2,3,5) and Q(8,—6,2).
P

0_A>:(ﬁ+%%and(ﬁ=(ﬁ+§?.
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Example (§4.1 Exercise 15)
Find the two points trisecting the segment between P(2,3,5) and Q(8,—6,2).
P

0_A>:(ﬁ+%%and0?:0$+§P .Sinceﬁzl—g],
3

oo [{ 3[BT
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Example (§4.1 Exercise 15)
Find the two points trisecting the segment between P(2,3,5) and Q(8,—6,2).
P

0A = 0P + 1PG and 0B = 0P + 2PQ. Since PQ = | —9 |,

S HRER NN EE

Therefore, the two points are A(4,0,4) and B(6, —3,3).
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Example (§4.1 Example 6)

Let ABCD be an arbitrary quadrilateral. Show that the midpoints of the
four sides of ABCD are the vertices of a parallelogram.

B
v Let M; denote the midpoint of /ﬁ
" M, the midpoint of R
A Mj5 the midpoint of @ and
¢ M, the midpoint of DA.
My
M3

D
: e
It suffices to prove that My M, = My Ms;.
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Definition
Two nonzero vectors are called parallel if and only if they have the same
direction or opposite directions.
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Definition
Two nonzero vectors are called parallel if and only if they have the same
direction or opposite directions.

Theorem (§4.1 Theorem 4)

Two nonzero vectors V .and w are parallel if and only if one is a scalar
multiple of the other.
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Definition
Two nonzero vectors are called parallel if and only if they have the same
direction or opposite directions.

Theorem (§4.1 Theorem 4)

Two nonzero vectors V .and w are parallel if and only if one is a scalar
multiple of the other.

In particular, if Vv and w are nonzero and have the same direction, then

V= |||‘V|||| w; if V and w have opposite directions, then v = |||||‘;V|||‘ v
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Definition
Two nonzero vectors are called parallel if and only if they have the same
direction or opposite directions.

Theorem (§4.1 Theorem 4)

Two nonzero vectors V .and w are parallel if and only if one is a scalar
multiple of the other.

In particular, if Vv and w are nonzero and have the same direction, then

V= |||‘V||| w; if V and w have opposite directions, then v = ‘||||‘/iv|||‘ v

Read §4.1 Example 7 yourselves — determining whether or not two vectors
are parallel.

Section 4.1 Page 22/31 |



Equations of Lines

Let L be a line, Py(xo, Yo, 20) a fixed point on L, P(x,y, z) an arbitrary

a
point on L, and d=| b | adirection vector for L, i.e., a vector parallel
C -
to L PO d I P
L | ’
Then 0? = 0—>P0 + W and ﬁ is parallel v
to d, so PyP = td for some t € R. 0e
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Equations of Lines

Let L be a line, Py(xo, Yo, 20) a fixed point on L, P(x,y, z) an arbitrary

a
point on L, and d= | b | adirection vector for L, i.e., a vector parallel
C -
to L PO d I P
L |
Then 0? = 0—>Po + ﬁ and ﬁ is parallel Lo
to d, so PyP = td for some t € R. 0e

Vector Equation of a Line

<l

— 0Py +td. t e R.
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Equations of Lines

Let L be a line, Py(xo, Yo, 20) a fixed point on L, P(x,y, z) an arbitrary

a
point on L, and d= | b | adirection vector for L, i.e., a vector parallel
C -
to L PO d I P
L |
Then 0? = 0—>Po + ﬁ and ﬁ is parallel Lo
to d, so PyP = td for some t € R. 0e

Vector Equation of a Line

0P = 0P, + td,t € R.
Notation in the text: p = (ﬁ Po = 0Py, so f = po + td.
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In component form, this is written as

X0

=1 Y
20

N < X
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Page 24/31



In component form, this is written as

X X0 a
y|l=1|»w|+t| b |, teRr
z 20 C

Parametric Equations of a Line

X = Xp+ta
y = yo+tbh, teR
z = Zzp+tc

Page 24/31
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In component form, this is written as

X X0 a
y|l=1|»w|+t| b |, teRr
z 20 c

Parametric Equations of a Line

X = Xp+ta
y = y+tbh, tekR
z = Zz9+tc

§4.1 Example 11 describes what happens with the parametric equations of
a line in R?.
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Example (similar to §4.1 Example 8)

Find an equation for the line through two points P(2,—1,7) and
Q(-3,4,5).
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Example (similar to §4.1 Example 8)

Find an equation for the line through two points P(2,—1,7) and
Q(-3,4,5).

A direction vector for this line is
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Example (similar to §4.1 Example 8)

Find an equation for the line through two points P(2,—1,7) and
Q(—3,4,5).

A direction vector for this line is

-5
di=PG=| s
-2
Therefore, a vector equation of this line is
X 2 -5
y|=|-11|+t 5
z 7 —2
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Example (similar to §4.1 Example 9)
Find an equation for the line through Q(4,—7,1) and parallel to the line

X 1 2
L y|l=|-1]|+t| =5
z 1 3
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Example (similar to §4.1 Example 9)

Find an equation for the line through Q(4,—7,1) and parallel to the line

X 1 2
L y -1 | +t| -5
z 1 3
The line has equation
X 4 2
y|=|-7|+t| -5 |[,teR
z 1 3
Section 4.1
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Example

Given two lines L; and Ly, find the point of intersection, if it exists.

x = 3+t x = 4+4+2s
Liy: y = 1-2t Lr: yv = 6+4+3s
z = 343t z = 1+s
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Example

Given two lines L; and Ly, find the point of intersection, if it exists.

x = 3+t x = 4+4+2s
Liy: y = 1-2t Lr: yv = 6+4+3s
z = 343t z = 1+s

Lines L1 and Ly intersect if and only if there are values s, t € R such that

3+t = 4+ 2s
1-2t = 6+ 3s
343t = 1+s
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Example

Given two lines L; and Ly, find the point of intersection, if it exists.

x = 3+t x = 4+2s
Liy: y = 1-2t Lr: yv = 6+4+3s
z = 343t z = 1+s

Lines Ly and Ly intersect if and only if there are values s, t € R such that

3+t = 4+42s

1-2t = 6+3s

3+3t = 1+s
i.e., if and only if the system

2s—t = -1
3s+2t = -5
s—3t = 2

is consistent.
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Example (continued)

2 -1|-1 1 0|-1
3 25| —=---—=[0 1|-1
1 -3 2 0 0] O
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Example (continued)

2 —-1|-1 1 0|-1

3 25| —=---—=[0 1|-1

1 3| 2 0 0| O
L; and L, intersect when s = —1 and t = —1.
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Example (continued)

2 —-1|-1 1 0f-1
3 2|-5|—=---— |0 1|-1
1 -3| 2 0 0| O
L1 and L, intersect when s = —1 and t = —1.
Using the equation for L; and setting t = —1, the point of intersection is

P(3+ (—1),1—2(—1),3+3(-1)) = P(2,3,0).
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Example (continued)

2 —-1|-1 1 0f-1
3 2|-5|—=---— |0 1|-1
1 -3| 2 0 0| O
L1 and L, intersect when s = —1 and t = —1.
Using the equation for L; and setting t = —1, the point of intersection is

P(3+ (—1),1—2(—1),3+3(-1)) = P(2,3,0).

Note. You can check your work by setting s = —1 in the equation for L.
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Example (§4.1 Exercise 22(g))
Find equations for the lines through P(1,0, 1) that meet the line

X 1 2
L:|y|=2]|+t]| -1
z 0 2

at points distance three from Py(1,2,0).
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Example (§4.1 Exercise 22(g))
Find equations for the lines through P(1,0,1) that meet the line

X 1 2
L:|y|=2]|+t]| -1
z 0 2

at points distance three from Py(1,2,0).
Pe

Find points @1 and @ on L that are distance three from Py, and then find
equations for the lines through P and @1, and through P and Q.

v
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Example (continued)

P(l,O, 1)

\

Qy

Section 4.1
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Example (continued)
P(1,0,1)

P0(1’23 0)

First, ||d]] = /22 + (-1)2+ 22 = /9 =3, so

(ﬁlzo—Pg—i-lJ, and(ﬁzzo—Po)—lci
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Example (continued)
P(1,0,1)

P0(172a O)

First, ||d|| = /22 + (—1)2+22 =19 =3, s0

00, = 0Py + 1d. and 00, = 0P — 1d.

a-[3)-[3)-1] - i (313

SO Ql = 01(3, 1,2) and Qg = Qg(—1,3, —2)
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Example (continued)

Equations for the lines:
o the line through P(1,0,1) and Q1(3,1,2)

X 1 2
{y]_mml_[olﬂll
z 1 1

o the line through P(1,0,1) and Q(—1,3,—2)

X 1 —2
[y]()?+P2|:0]+t|: 3
z 1 -3

|
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