$18.02 \quad$ Problem Set 9
 (Due Tuesday, May 3, 11:59:59 PM)

Part I (80 points)

HAND IN ONLY THE UNDERLINED PROBLEMS
(The others are some suggested choices for more practice.)
EP $=$ Edwards and Penny; SN $=$ Supplementary Notes (most have solutions)

Divergence Theorem

Reading: EP §15.6 SN §V10
Exercises:
EP $\S 15.64,5, \underline{7}, \underline{9}, 10,12, \underline{16}, \underline{17}, \underline{21}, \underline{23}, \underline{27}$
SN $\S 6 \mathrm{C} \underline{4}, 5, \underline{7}, 11$

Part II (20 points)

Directions: Try each problem alone for 20 minutes. If you collaborate later, you must write up solutions independently.

Problem 1 (20) Consider a torus of inner radius 3, outer radius 5 whose plane of symmetry is the $x y$-plane and whose center lies at the origin. Let S_{1} be the part this torus above the $x y$-plane and let S_{2} be the portion of the $x y$-plane lying inside this torus. Let $\mathbf{F}(x, y, z)=\left(x+\sin (y z), x^{2}(2 y z-1)+z^{2}, x^{2}+y^{2}+z^{2}-z\right)$. Compute $\int_{S_{1}} \mathbf{F} \cdot \mathbf{n} d S$ by computing $\int_{S_{2}} \mathbf{F} \cdot \mathbf{n} d S$ and then using the divergence theorem. [Hint: what type of symmetry does the torus have?]

