18.02 Problem Set 8
 (Due Wednesday, April 27, 11:59:59 PM)

Part I (63 points)

HAND IN ONLY THE UNDERLINED PROBLEMS
(The others are some suggested choices for more practice.)
EP $=$ Edwards and Penny; SN $=$ Supplementary Notes (most have solutions)
Normal Form of Green's Theorem, Simply Connected Regions
Reading: EP §15.4 SN §§V3, V4, V5, V6
Exercises:
EP §15.4 21, $\underline{23}, 26, \underline{29}, 35$
SN §4G 5, $\underline{6}$
SN §6G 1

Stokes' Theorem

Reading: EP §15.7 SN §V13
Exercises:
EP $\S 15.7 \underline{1}, \underline{3}, \underline{10}, \underline{16} \mathrm{SN} \S 6 \mathrm{~F} \underline{5 b}$

Part II (37 points)

Directions: Try each problem alone for 20 minutes. If you collaborate later, you must write up solutions independently.
Problem 1 () Let $f(x, y)=\frac{x^{3} y}{x^{2}+y^{2}}+I(x, y)$ and C be the circle in the $x y$-plane of radius 1 centered at the origin. Your objective is to compute

$$
\oint_{C} x f(x, y) d x+y f(x, y) d y .
$$

Unforetunately, the function I, though defined on the whole plane, is impossible to integrate. You would like to use Green's theorem to hopefully get rid of I, but there is a problem: $f(0,0)$ doesn't exist, and doing this wouldn't get rid of I anyway.
Being very insightful, you realize that Stokes' theorem could help. You can change your vector field, as long as it agrees with the old one on C, and use a surface in three dimensions for which C is the boundary. [Hint: Try changing f to $f(x, y, z)=$ $\frac{x^{3} y}{x^{2}+y^{2}+z^{2}}+I(x-x z, y-y z)$ and using for a surface the cylinder of radius 1 topped by a disc in the $z=1$ plane. You need to explain why all this works.]

