$18.02 \quad$ Problem Set 7
 (Due Wednesday, April 20, 11:59:59 PM)

Part I (77 points)

HAND IN ONLY THE UNDERLINED PROBLEMS
(The others are some suggested choices for more practice.)
EP $=$ Edwards and Penny; SN $=$ Supplementary Notes (most have solutions)

Surface integrals

Reading: EP §§14.8, 15.5 SN §V9
Exercises:
EP $\S 14.8 \underline{9}, 12,14,16 \mathrm{EP} \S 15.5 \underline{3}, 5, \underline{11}, \underline{15}, 16,22, \underline{24}, \underline{37}$ (Don't evaluate the integral)
SN $\S 6 \mathrm{~B} \underline{1}, 2,6, \underline{7}, 12$

Green's Theorem

Reading: EP §15.4
Exercises:
EP $\S 15.4 \underline{1}, 4, \underline{9}, 18, \underline{33}, 41$

Part II (23 points)

Directions: Try each problem alone for 20 minutes. If you collaborate later, you must write up solutions independently.
Problem 1 (23) Consider the Klein bottle S, parameterized by

$$
\begin{aligned}
x & =\cos u\left(\cos \left(\frac{u}{2}\right)(\sqrt{2}+\cos v)+\sin \left(\frac{u}{2}\right) \sin v \cos v\right) \\
y & =\sin u\left(\cos \left(\frac{u}{2}\right)(\sqrt{2}+\cos v)+\sin \left(\frac{u}{2}\right) \sin v \cos v\right) \\
z & =-\sin \left(\frac{u}{2}\right)(\sqrt{2}+\cos v)+\cos \left(\frac{u}{2}\right) \sin v \cos v
\end{aligned}
$$

where $0 \leq u \leq 2 \pi$ and $0 \leq v \leq 2 \pi$. The Klein bottle is not orientable, so there is no continuous choice of normal vector and thus our definition of a flux integral is no longer well defined. But if we take the absolute value of $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}}$ then we can integrate a vector field over this surface.
Let $\overrightarrow{\mathbf{F}}(x, y, z)=(0,0,1)$. Compute $\iint_{S}|\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}}| d S$.

