$18.02 \quad$ Problem Set 4
 (Due Tuesday, March 8, 11:59:59 PM)

Part I (90 points)

HAND IN ONLY THE UNDERLINED PROBLEMS

(The others are some suggested choices for more practice.)
EP $=$ Edwards and Penny; SN $=$ Supplementary Notes (most have solutions)

Differentials, chain rule

Reading: EP $\S \S 13.6,13.7$ SN $\S \mathrm{N}$
Exercises:
EP $\S 13.65, \underline{8}, \underline{36}, 40,44$
EP $\S 13.75,8, \underline{9}, \underline{12}, 23, \underline{31}, \underline{48}, 50,51$
SN §2C 3
SN $\S 2 \mathrm{E} 2, \underline{5}$

Gradient, directional derivatives

Reading: EP $\$ \S 13.8$
Exercises:
EP $\S 13.8$ 2, 7, 16, 19, 21, 32, 46, $\underline{51}, 60$
SN $\S 2 \mathrm{D} 1,2 \mathrm{abc}, 3,4$

Lagrange multipliers

Reading: EP §13.9
Exercises:
EP $\S 13.9 \underline{13}, \underline{22}, 30, \underline{43}, 49,62, \underline{63}$
SN §2I 1ab, 2

Part II (10 points)

Directions: Try each problem alone for 20 minutes. If you collaborate later, you must write up solutions independently.

Problem $1(10 ; 4,6)$ Let $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}, f:(x, y, z) \mapsto\left(x^{2}+y^{2}, 2 x y z\right)$ and let $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}, g:(u, v) \mapsto(u-1, u v, v)$
We computed in Problem Set 1 that $g(f(x, y, z))=\left(x^{2}+y^{2}-1,2 x y z\left(x^{2}+y^{2}\right), 2 x y z\right)$.
a) Compute the total derivative (in matrix form) of $g \circ f$ at the point (a, b, c) directly.
b) Compute it using the chain rule.

