18.02 ESG Exam 2 Solutions Spring 2005

1. [80 points]

Let $f(x, y)=4 x y-x^{3} y-x y^{3}$.
(a) [10] Compute all first and second order partial derivatives of f.

$$
\begin{gathered}
\frac{\partial f}{\partial x}=4 y-3 x^{2} y-y^{3} \\
\frac{\partial f}{\partial y}=4 x-x^{3}-3 x y^{2} \\
\frac{\partial^{2} f}{\partial x^{2}}=-6 x y \\
\frac{\partial^{2} f}{\partial x \partial y}=4-3 x^{2}-3 y^{2} \\
\frac{\partial^{2} f}{\partial y^{2}}=-6 x y
\end{gathered}
$$

(b) [30] Find and classify (as a local minimum, maximum or saddle point) all critical points of f.
$4 y-3 x^{2} y-y^{3}=y\left(4-3 x^{2}-y^{2}\right)=0$, which implies that $y=0$ or $4-3 x^{2}-y^{2}=0$.
In the first case, $4 x-x^{3}=0$ and thus $x=0,2$, or -2 .
In the second case, $y^{2}=4-3 x^{2}$, so the second equation turns into $4 x-x^{3}-3 x\left(4-3 x^{2}\right)=8 x^{3}-8 x=0$ and therefore $x=0,1$, or -1 .
If $x=0$ then $y^{2}=4$ so $y= \pm 2$.
If $x= \pm 1$ then $y^{2}=4-3=1$ so $y= \pm 1$.
Therefore there are nine solutions: $(0,0),(2,0),(-2,0),(0,2)$, $(0,-2),(1,1),(1,-1),(-1,1),(-1,-1)$.

We construct a table to determine what type of critical point it is.

point	$\frac{\partial^{2} f}{\partial x^{2}}$	$\frac{\partial^{2} f}{\partial y^{2}}$	$\frac{\partial^{2} f}{\partial x \partial y}$	$\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}$	type of critical point
$(0,0)$	0	0	4	-16	saddle
$(2,0)$	0	0	-8	-64	saddle
$(0,2)$	0	0	-8	-64	saddle
$(-2,0)$	0	0	-8	-64	saddle
$(0,-2)$	0	0	-8	-64	saddle
$(1,1)$	-6	-6	-2	32	maximum
$(1,-1)$	6	6	-2	32	minimum
$(-1,1)$	6	6	-2	32	minimum
$(-1,-1)$	-6	-6	-2	32	maximum

(c) [15] Suppose you now consider f as a function on the disk D of radius 2 around the origin. Write down the Lagrange multiplier equations for finding extrema of f on the circle of radius 2 around the origin. Find the global minimum and global maximum value of f on D.

The boundary of the disk is given by the equation $x^{2}+y^{2}=4$. Thus the Lagrange multiplier equations are

$$
\begin{array}{r}
4 y-3 x^{2} y-y^{3}=2 \lambda x, \\
4 x-x^{3}-3 x y^{2}=2 \lambda y, \\
x^{2}+y^{2}=4 .
\end{array}
$$

Note that f factors as $x y\left(4-x^{2}-y^{2}\right)$ and is thus identically zero on the circle of radius 2 . Thus the maximum of f on the disc occurs at $(1,1)$ and $(-1,-1)$ with value 2 and the minimum at $(1,-1)$ and $(-1,1)$ with value -2 .
(d) [5] Find the gradient of f at the point $(2,2)$.
$\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=\left(4 \cdot(2)-3 \cdot(2)^{2}(2)-(2)^{3}, 4 \cdot(2)-3 \cdot(2)^{2}(2)-(2)^{3}\right)=$ $(-24,-24)$.
(e) [10] Find the tanget plane to f at the point $(2,2)$.

The equation of the tangent plane is given by

$$
z-z_{0}=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}\left(x-x_{0}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}\left(y-y_{0}\right)
$$

which in this case yields

$$
z+16=-24(x-2)-24(y-2)
$$

(f) [10] Find a direction \mathbf{u} such that $D_{\mathbf{u}}(f)=\frac{-24}{5}$.

We want $\nabla f \cdot \mathbf{u}=\frac{-24}{5}$ so $-24 u_{x}-24 u_{y}=\frac{-24}{5}$, and since \mathbf{u} is a unit vector, $u_{x}^{2}+u_{y}^{2}=1$.
Solving these two equations yields $\mathbf{u}=\left(\frac{4}{5},-\frac{3}{5}\right)$ or $\mathbf{u}=\left(-\frac{3}{5}, \frac{4}{5}\right)$.
2. [20 points]

Suppose that the variables x, y, z satisfy an equation $g(x, y, z)=0$. Assume the point $P(1,1,1)$ lies on this level surface of g and that $\nabla g(1,1,1)=<-1,1,2>$. Let $f(x, y, z)$ by another function, and assume that $\nabla f(1,1,1)=<1,2,1>$. Find the gradient of the function $w=f(x, y, z(x, y))$ of the two independent variables x and y at the point $x=1, y=1$.

By the chain rule,

$$
\begin{aligned}
\frac{\partial w}{\partial x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial x} \\
\frac{\partial w}{\partial y} & =\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial y}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial g}{\partial x}+\frac{\partial g}{\partial z} \frac{\partial z}{\partial x}=0 \\
& \frac{\partial g}{\partial y}+\frac{\partial g}{\partial z} \frac{\partial z}{\partial y}=0
\end{aligned}
$$

Thus

$$
\frac{\partial w}{\partial x}=\frac{\partial f}{\partial x}-\frac{\partial f}{\partial z} \frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial z}}=1-1 \cdot \frac{-1}{2}=\frac{3}{2}
$$

and

$$
\frac{\partial w}{\partial y}=\frac{\partial f}{\partial y}-\frac{\partial f}{\partial z} \frac{\frac{\partial g}{\partial y}}{\frac{\partial g}{\partial z}}=2-1 \cdot \frac{1}{2}=\frac{3}{2}
$$

Therefore $\nabla w=\left(\frac{3}{2}, \frac{3}{2}\right)$.

