18.02 Spring 2005

Test 1 Solutions

Problem 1

a)
\[
\begin{pmatrix}
2 & 8 & -4 \\
1 & 5 & 0 \\
1 & 1 & -8
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
4 \\
3 \\
-1
\end{pmatrix}.
\]

b) No:
\[
det(A) = 2(5(-8) - 1(0)) - 8(1(-8) - 1(0)) + (-4)(1(1) - 1(5)) = 0.
\]

c)
\[
\begin{pmatrix}
2 & 8 & -4 & 4 \\
1 & 5 & 0 & 3 \\
1 & 1 & -8 & -1
\end{pmatrix}
\begin{pmatrix}
1 & 4 & -2 & 2 \\
0 & 1 & 2 & 1 \\
0 & -3 & -6 & -3 \\
1 & 0 & -10 & -2 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_2
\end{pmatrix}
=
\begin{pmatrix}
-2 + 10t \\
2 - 2t \\
t
\end{pmatrix}.
\]

Thus the solution to the system is

Problem 2

a)
\[
-1 \leq x \leq 1,
\]
\[
-\sqrt{1-x^2} \leq y \leq \sqrt{1-x^2},
\]
\[
-c\sqrt{1-x^2-y^2} \leq z \leq c\sqrt{1-x^2-y^2}.
\]

b)
\[r^2 + \frac{z^2}{c^2} = 1. \]

c)
\[0 \leq \theta \leq 2\pi, \]
\[0 \leq r \leq 1, \]
\[-c\sqrt{1 - r^2} \leq z \leq c\sqrt{1 - r^2}. \]

d)
\[\rho^2 \cos^2 \phi + \frac{\rho^2 \sin^2 \phi}{c^2} = 1. \]

e)
\[0 \leq \theta \leq 2\pi, \]
\[0 \leq \phi \leq \pi, \]
\[0 \leq \rho \leq \frac{c}{\sqrt{\sin^2 \phi + c^2 \cos^2 \phi}}. \]

Problem 3

a) The tangent vector is given by differentiating \(\gamma \). It will be parallel to \(\mathbf{P} \) if it is orthogonal to \((1, 2, -7)\). Thus
\[
(12e^{3t_0}, 2e^{2t_0}, 4e^{2t_0}) \cdot (1, 2, -7) = 12e^{3t_0} - 24e^{2t_0} = 12e^{2t_0}(e^{t_0} - 2),
\]
so \(t_0 = \ln 2 \).

b) Since \(\gamma(t_0) = (32, 4, 8) \) and \(\gamma'(t_0) = (96, 8, 16) \) the parametric equations are given by
\[
v(s) = (32 + 96s, 4 + 8s, 8 + 16s)
\]
and the symmetric equations are given by
\[
\frac{x - 32}{96} = \frac{y - 4}{8} = \frac{z - 8}{16}.
\]

c) It’s direction is given by \((1, 2, -7) \times (96, 8, 16) = (88, -688, -184)\) so the parametric equations are
\[
v(s) = (32 + 88s, 4 - 688s, 8 - 184s).
\]

Problem 4

The two helices are given by the equations \((\cos t, \sin t, t)\) and \((-\cos t, \sin t, t)\). For each \(t \), one can draw the line segment between these two points. Call the parameter of the line segment \(s \). Then \((s \cos t, s \sin t, t)\) gives the line segment as \(s \) ranges from -1 to 1, so the surface is given parametrically by
\[
(s \cos t, s \sin t, t)
\]
\[
-1 \leq s \leq 1
\]
\[
-\infty \leq t \leq \infty
\]