Part I (48 points)

HAND IN ONLY THE UNDERLINED PROBLEMS
(The others are some suggested choices for more practice.)

EP = Edwards and Penny; SN = Supplementary Notes (most have solutions)

Normal Form of Green’s Theorem, Simply Connected Regions
Reading: EP §15.4 SN §§V3, V4, V5, V6
Exercises:
EP §15.4 21, 23, 26, 29
SN §4G 5, 6
SN §6G 1

Stokes’ Theorem
Reading: EP §15.7 SN §V13
Exercises:
EP §15.7 1, 3, 10, 16

Part II (18 points)

Directions: Try each problem alone for 20 minutes. If you collaborate later, you must write up solutions independently.

Problem 1 () Let \(f(x, y) = \frac{x^3y}{x^2+y^2} + I(x, y) \) and \(C \) be the circle in the \(xy \)-plane of radius 1 centered at the origin. Your objective is to compute

\[
\oint_C xf(x, y)dx + yf(x, y)dy.
\]

Unfortunately, the function \(I \), though defined on the whole plane, is impossible to integrate. You would like to use Green’s theorem to hopefully get rid of \(I \), but there is a problem: \(f(0,0) \) doesn’t exist, and doing this wouldn’t get rid of \(I \) anyway.

Being very insightful, you realize that Stokes’ theorem could help. You can change your vector field, as long as it agrees with the old one on \(C \), and use a surface in three dimensions for which \(C \) is the boundary. [Hint: Try changing \(f \) to \(f(x, y, z) = \frac{x^3y}{x^2+y^2+z^2} + I(x-xz, y-yz) \) and using for a surface the cylinder of radius 1 topped by a disc in the \(z = 1 \) plane. You need to explain why all this works.]