$18.02 \rho \quad$ Problem Set 8
 (Due Wednesday, November 23, 13:05:00)

Part I (55 points)

> HAND IN ONLY THE UNDERLINED PROBLEMS
> (The others are some suggested choices for more practice.)
> EP $=$ Edwards and Penny; SN $=$ Supplementary Notes (most have solutions)

Surface integrals

Reading: EP §§14.8, 15.5 SN §V9
Exercises:
EP $\S 14.8 \underline{9}, 12,14,16 \mathrm{EP} \S 15.5 \underline{3}, 5, \underline{11}, 15,16,22, \underline{24}, \underline{37}$ (Don't evaluate the integral) SN $\S 6 \mathrm{~B} \underline{1}, 2,6, \underline{7}, 12$

Green's Theorem

Reading: EP §15.4
Exercises:
EP $\S 15.4 \underline{1}, 4, \underline{9}, 18, \underline{33}, \underline{39}, 41$

Part II (45 points)

Directions: Try each problem alone for 20 minutes. If you collaborate later, you must write up solutions independently. There are more than 45 points available: you may choose which you want to solve in order to obtain enough (though you're welcome to solve more).
Problem 1 (25) In quantum mechanics, the state of a particle can be described by it's wave function Ψ. The wave function is a complex valued function defined on \mathbb{R}^{3}. One interpretation of the wave function is that the probability $P(V)$ of finding the particle in a given volume V of space is

$$
P(V)=\iiint_{V}|\Psi|^{2} d V
$$

Consider a hydrogen atom. The electron can occupy many different possible orbitals, all of which have different wave functions. For this problem we will be concentrating on the $3 p_{z}$ orbital, which has equation

$$
\Psi(\rho, \theta, \phi)=\frac{\sqrt{2}}{81 \sqrt{\pi}}\left(\frac{1}{a}\right)^{\frac{3}{2}}\left(6 \sigma-\sigma^{2}\right) e^{-\sigma / 3} \cos \phi
$$

where $a=\frac{\epsilon_{0} h^{2}}{\pi q^{2} m_{e}} \approx 0.529 \AA$ is the Bohr radius and $\sigma=\frac{\rho}{a}$.
Remark: The general formula for the orbital with quantum numbers n, l and m is

$$
\sqrt{\left(\frac{2}{n a}\right)^{3} \frac{(n-l-1)!}{2 n[(n+l)!]^{3}}} e^{-\frac{\rho}{n a}}\left(\frac{2 \rho}{n a}\right)^{l} L_{n-l-1}^{2 l+1}\left(\frac{2 \rho}{n a}\right) Y_{l}^{m}(\phi, \theta)
$$

where

$$
Y_{l}^{m}(\phi, \theta)=\epsilon \sqrt{\frac{2 l+1}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}} e^{i m \theta} P_{l}^{m}(\cos \phi)
$$

with $L_{q}(x)=e^{x} \frac{d^{q}}{d x^{q}}\left(e^{-x} x^{q}\right)$ the q th Laguerre polynomial, $L_{q-p}^{p}(x)=(-1)^{p} \frac{d^{p} L_{q}}{d x^{p}}$ an associated Laguerre polynomial, $P_{l}(x)=\frac{1}{2 l!} \frac{d^{l}}{2^{l}}\left(x^{2}-1\right)^{l}$ the l the Legendre polynomial, $P_{l}^{m}(x)=\left(1-x^{2}\right)^{|m| / 2} \frac{d^{m \mid} \mid P_{l}}{\left.d x\right|^{m m}}$ an associated Legendre function, and $\epsilon=(-1)^{m}$ for $m \geq 0$ and $\epsilon=1$ for $m<0$. The $3 p_{z}$ orbital is the case $n=3, l=1$, and $m=0$. For the following problems, you should do them for this orbital, but feel free to try it for other orbitals or even the general one.
a) [10] Find the probability of finding the electron with ρ between a and $2 a$.
b) [5] While the probability of finding the electron at any given radius is zero, find an integral that measures the relative probability of finding the electron at radius ρ.
c) [10] Evaluate your expression from part b. Find the radius at which it is most probable to find the electron.
Problem 2 (20) Consider the Klein bottle S, parameterized by

$$
\begin{aligned}
x & =\cos u\left(\cos \left(\frac{u}{2}\right)(\sqrt{2}+\cos v)+\sin \left(\frac{u}{2}\right) \sin v \cos v\right) \\
y & =\sin u\left(\cos \left(\frac{u}{2}\right)(\sqrt{2}+\cos v)+\sin \left(\frac{u}{2}\right) \sin v \cos v\right) \\
z & =-\sin \left(\frac{u}{2}\right)(\sqrt{2}+\cos v)+\cos \left(\frac{u}{2}\right) \sin v \cos v
\end{aligned}
$$

where $0 \leq u \leq 2 \pi$ and $0 \leq v \leq 2 \pi$. The Klein bottle is not orientable, so there is no continuous choice of normal vector and thus our definition of a flux integral is no longer well defined. But if we take the absolute value of $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}}$ then we can integrate a vector field over this surface.
Let $\overrightarrow{\mathbf{F}}(x, y, z)=(0,0,1)$. Compute $\iint_{S}|\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}}| d S$.
Problem 3 (68) (A first course in complex variables, adapted from Spivak)
If $f: \mathbb{C} \rightarrow \mathbb{C}$, define f to be differentiable at $z_{0} \in \mathbb{C}$ if the limit

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists. If f is differentiable at every point z in an open set A and f^{\prime} is continuous on A, then f is called analytic on A.
a) [8] Show that $f(z)=z$ is analytic and $f(z)=\bar{z}$ is not (where bar denotes complex conjugation). Show that the sum, product, and quotient of analytic functions are analytic.
b) [10] If $f=u+i v$ is analytic on A, show that u and v satisfy the Cauchy-Riemann equations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

[Hint: Use the fact that $\lim _{z \rightarrow z_{0}}\left[f(z)-f\left(z_{0}\right)\right] /\left[z-z_{0}\right]$ must be the same for $z=$ $z_{0}+(x+i \cdot 0)$ and $z=z_{0}+(0+i \cdot y)$ with $(x, y) \rightarrow(0,0)$. (Note that the converse is also true, if u and v are differentiable, though this is harder to prove).]
c) [8] Let $T: \mathbb{C} \rightarrow \mathbb{C}$ be a linear transformation (where \mathbb{C} is considered as a vector space over \mathbb{R}). If the matrix of T with respect to the basis $(1, i)$ is $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ show that T is multiplication by a complex number if and only if $a=d$ and $b=-c$. Part b shows that an analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$, considered as a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, has a derivative $D f\left(z_{0}\right)$ which is multiplication by a complex number. What complex number is this?
d) [10] Define

$$
\begin{aligned}
d(\omega+i \eta) & =d \omega+i d \eta \\
\int_{C} \omega+i \eta & =\int_{C} \omega+i \int_{C} \eta \\
(\omega+i \eta) \wedge(\theta+i \lambda) & =\omega \wedge \theta-\eta \wedge \lambda+i(\eta \wedge \theta+\omega \wedge \lambda), \\
d z & =d x+i d y
\end{aligned}
$$

Show that $d(f \cdot d z)=0$ if and only if f satisfies the Cauchy Riemann equations.
e) [10] Prove the Cauchy Integral Theorem: If f is analytic on A, then $\int_{C} f d z=0$ for every closed curve C such that C is the boundary of some region $R \subset A$.
f) [10] Show that if $g(z)=1 / z$ then $g \cdot d z=i d \theta+d h$ for some function $h: \mathbb{C}-0 \rightarrow \mathbb{R}$. Conclude that if $C(R, n)$ is a curve that winds counterclockwise around a circle of radius $R n$ times, then $\int_{C(R, n)} \frac{1}{z} d z=2 \pi i n$.
g) [12] If f is analytic on $\{z:|z|<1\}$, use the fact that $g(z)=f(z) / z$ is analytic in $\{z: 0<|z|<1\}$ to show that

$$
\int_{C\left(R_{1}, n\right)} \frac{f(z)}{z} d z=\int_{C\left(R_{2}, n\right)} \frac{f(z)}{z} d z
$$

if $0<R_{1}, R_{2}<1$. Use part f to evaluate $\lim _{R \rightarrow 0} \int_{C(R, n)} \frac{f(z)}{z} d z$ and conclude:
Cauchy Integral Formula: If f is analytic on $\{z:|z|<1\}$ and C is a closed curve in $\{z: 0<|z|<1\}$ with winding number n around 0 , then

$$
n \cdot f(0)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z} d z
$$

