$18.02 \rho \quad$ Problem Set 6
 (Due Tuesday, November 1, 11:59:59 PM)

Part I (56 points)

> HAND IN ONLY THE UNDERLINED PROBLEMS
> (The others are some suggested choices for more practice.)
> $\mathrm{EP}=$ Edwards and Penny; SN $=$ Supplementary Notes (most have solutions)

Double and triple integrals in rectangular coordinates
Reading: EP $\S \S 14.1,14.2,14.3,14.6$ SN \S I
Exercises:
EP §14.1 31
EP $\S 14.26, \underline{13}, 17,22, \underline{28}$
EP $\S 14.36,17,24, \underline{33}$ (setup only), 37, 42, $\underline{44}$
EP $\S 14.6$ 3, 7, 17, 43, 44, 48
SN §3A 1, 3

Change of variables, double integrals in polar coordinates
Reading: EP $\S \S 14.4,14.9, \mathrm{SN} \S \mathrm{CV}$
Exercises:
EP $\S 14.43,12, \underline{15}, 29, \underline{34}, 35$
EP $\S 14.97,9,10, \underline{12}, 20$
SN §3B 2, 4
SN §3D $\underline{2}$

Triple integrals in spherical and cylindrical coordinates
Reading: EP §14.7
Exercises:
EP $\S 14.7$ 3, $\underline{10}, 15,22, \underline{28}, \underline{35}, \underline{37}, 38,40,42$

Part II 44 points

Problem 1

Find the average squared distance between two points in the unit disc (the points are both chosen uniformly and independently). [Hint: You should evaluate a quadruple integral. The law of cosines is your friend.]

Problem $2 \quad(6 ; 3,3)$

a) Find a change of coordinates (s, α) such that $\alpha=3 \theta$ and $d x d y=s^{5} d s d \alpha$.
b) Let \mathcal{R} be the disc of radius 3 centered at the origin. Evaluate the integral

$$
\iint_{\mathcal{R}} e^{x^{2}+y^{2}} d x d y
$$

using the coordinates (r, θ) and (s, α). Verify that you get the same answer.

Problem 3 (12; 3,3,3,3) EP §14.9 28 and 29.

Problem 4 (12) EP §14.Misc 54. There's a typo in the problem: $r^{2}=\frac{u v}{u+v}$ should be $r^{4}=\frac{u v}{u+v}$. Also, the final answer may be wrong, so don't worry if you get something else.

Problem 5 (6) EP §14.7 44.

