18.02 Problem Set 5
 (Due Tuesday, October 18, 11:59:59 PM)

Part I (40 points)

HAND IN ONLY THE UNDERLINED PROBLEMS
(The others are some suggested choices for more practice.)
EP $=$ Edwards and Penny; SN $=$ Supplementary Notes (most have solutions)

Gradient, directional derivatives

Reading: EP $\S \S 13.8$
Exercises:
EP $\S 13.82,7,16,19, \underline{21}, \underline{32}, 46, \underline{51}, 60$
SN $\S 2 \mathrm{D} 1,2 \mathrm{ab} \mathrm{c}, 3,4$

Lagrange multipliers

Reading: EP $\S 13.9$
Exercises:
EP $\S 13.9 \underline{13}, 22,30, \underline{43}, 49, \underline{62}, 63$
SN §2I 1ab, 2

Part II (26+12EC points)

Directions: Try each problem alone for 20 minutes. If you collaborate later, you must write up solutions independently.

Problem 1

Consider a function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ that you want to maximize subject to the constraint $g(x, y, z)=0$. Let $S=\{(x, y, z): g(x, y, z)=0\}$. Using Lagrange multipliers we can maximize f on S by requiring $\nabla f=\lambda \nabla g$ for some λ and solving for λ as well as the point $\mathbf{x} \in \mathbb{R}^{3}$. Locally around \mathbf{x}, the graph of $g(x, y, z)$ is a surface, so we should expect the same kinds of local behavior for f restricted to S as we have for maps from \mathbb{R}^{2} to \mathbb{R}. Given such an arbitrary f and g, determine the analogue of the second derivative test for critical points of f when restricted to S. [Hint: look at the proof of Lagrange's method in the book]

Problem $2(12 ; 6,4,2)$
a) Consider a function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$. I give you the following information about f :
(i) f has no isolated local maxima (a maximum point \mathbf{x} is isolated if there is some neighborhood U of \mathbf{x} such that for all $\left.\mathbf{x}^{\prime} \in U, f\left(\mathbf{x}^{\prime}\right)<f(\mathbf{x})\right)$.
(ii) The isolated minima of f occur precisely at the points (x, y) where x and y are both integers. The value of f at all of these points is 0 .
(iii) At any point of distance $\frac{1}{3}$ from such an integral point, the directional derivative in the inward pointing direction is positive.

Either draw sufficiently many level curves of f to show its behavior (ie you should include at least four minima and draw level curves spanning the range of values f takes on), or give a formula for a function f satisfying the above conditions.
b) On a separate plot, draw the gradient field of f.
c) Is f globally bounded? Give an argument supporting your answer.

Problem 3 (12 points extra credit; 1, 9, 2)
a) What is the ring of integers in $\mathbb{Q}[\sqrt{26}]$?
b) What is the class group?
c) What is the fundamental unit?

