18.02 Problem Set 5
(Due Tuesday, October 18, 11:59:59 PM)

Part I (40 points)

HAND IN ONLY THE UNDERLINED PROBLEMS
(The others are some suggested choices for more practice.)
EP = Edwards and Penny; SN = Supplementary Notes (most have solutions)

Gradient, directional derivatives
Reading: EP §§13.8
Exercises:
EP §13.8 2, 7, 16, 19, 21, 32, 46, 51, 60
SN §2D 1, 2abc, 3, 4

Lagrange multipliers
Reading: EP §13.9
Exercises:
EP §13.9 13, 22, 30, 43, 49, 62, 63
SN §2I 1ab, 2

Part II (26+12EC points)

Directions: Try each problem alone for 20 minutes. If you collaborate later, you
must write up solutions independently.

Problem 1 (14)
Consider a function \(f: \mathbb{R}^3 \to \mathbb{R} \) that you want to maximize subject to the constraint
\(g(x, y, z) = 0 \). Let \(S = \{(x, y, z) : g(x, y, z) = 0\} \). Using Lagrange multipliers we can
maximize \(f \) on \(S \) by requiring \(\nabla f = \lambda \nabla g \) for some \(\lambda \) and solving for \(\lambda \) as well as
the point \(x \in \mathbb{R}^3 \). Locally around \(x \), the graph of \(g(x, y, z) \) is a surface, so we should
expect the same kinds of local behavior for \(f \) restricted to \(S \) as we have for maps
from \(\mathbb{R}^2 \) to \(\mathbb{R} \). Given such an arbitrary \(f \) and \(g \), determine the analogue of the second
derivative test for critical points of \(f \) when restricted to \(S \). [Hint: look at the proof
of Lagrange’s method in the book]

Problem 2 (12; 6, 4, 2)
a) Consider a function \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \). I give you the following information about \(f \):

(i) \(f \) has no isolated local maxima (a maximum point \(x \) is isolated if there is some neighborhood \(U \) of \(x \) such that for all \(x' \in U \), \(f(x') < f(x) \)).

(ii) The isolated minima of \(f \) occur precisely at the points \((x, y)\) where \(x \) and \(y \) are both integers. The value of \(f \) at all of these points is 0.

(iii) At any point of distance \(\frac{1}{3} \) from such an integral point, the directional derivative in the inward pointing direction is positive.

Either draw sufficiently many level curves of \(f \) to show its behavior (ie you should include at least four minima and draw level curves spanning the range of values \(f \) takes on), or give a formula for a function \(f \) satisfying the above conditions.

b) On a separate plot, draw the gradient field of \(f \).

c) Is \(f \) globally bounded? Give an argument supporting your answer.

Problem 3 (12 points extra credit; 1, 9, 2)

a) What is the ring of integers in \(\mathbb{Q}[\sqrt{26}] \)?

b) What is the class group?

c) What is the fundamental unit?