$18.02 \rho \quad$ Problem Set 4
 (Due Tuesday, October 11, 11:59:59 PM)

Part I (50 points)

HAND IN ONLY THE UNDERLINED PROBLEMS
(The others are some suggested choices for more practice.)
EP $=$ Edwards and Penny; SN $=$ Supplementary Notes (most have solutions)

Second derivative test, boundaries, infinity

Reading: EP §13.10, SN §SD
Exercises:
EP $\S 13.525, \underline{57}$
EP $\S 13.105,7, \underline{20}, 21,25, \underline{33}$
SN $\S 2 \mathrm{H} 7$

Differentials, chain rule

Reading: EP §§13.6, 13.7 SN §N
Exercises:
EP $\S 13.6$ 5, $\underline{8}, 36,40,44$
EP $\S 13.75, \underline{8}, 9,12,23, \underline{31}, \underline{48}, 50,51$
SN §2C 3
SN $\S 2 \mathrm{E} 2, \underline{5}$

Part II (16 points)

Directions: Try each problem alone for 20 minutes. If you collaborate later, you must write up solutions independently.

Problem 1
Consider the function

$$
f(x, y, z)=2 \frac{x^{2}+y^{2}}{x^{2}+y^{2}+1}+e^{-\left(y^{2}+z^{2}\right)}
$$

defined on all of \mathbb{R}^{3}. Does this function have a global maximum? Justify your answer. If it does, find the maximum value.

Problem $2(8 ; 4,4)$
Let $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}, f:(x, y, z) \mapsto\left(x^{2}+y^{2}, 2 x y z\right)$ and let $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}, g:(u, v) \mapsto$ $(u-1, u v, v)$
a) Compute the total derivative (in matrix form) of $g \circ f$ at the point (a, b, c) directly.
b) Compute it using the chain rule.

