18.02 ρ Problem Set 4

(Due Tuesday, October 11, 11:59:59 PM)

Part I (50 points)

HAND IN ONLY THE UNDERLINED PROBLEMS

(The others are *some* suggested choices for more practice.) EP = Edwards and Penny; SN = Supplementary Notes (most have solutions)

Second derivative test, boundaries, infinity

Reading: EP $\S13.10$, SN \SSD Exercises: EP $\S13.5\ 25,\ 57$ EP $\S13.10\ 5,\ 7,\ 20,\ 21,\ 25,\ 33$ SN $\S2H\ 7$

Differentials, chain rule Reading: EP §§13.6, 13.7 SN §N

Exercises: EP §13.6 5, $\underline{8}$, 36, 40, 44 EP §13.7 5, $\underline{8}$, 9, 12, 23, $\underline{31}$, $\underline{48}$, 50, 51 SN §2C $\underline{3}$ SN §2E 2, $\underline{5}$

Part II (16 points)

Directions: Try each problem alone for 20 minutes. If you collaborate later, you must write up solutions independently.

Problem 1 (8) Consider the function

$$f(x, y, z) = 2\frac{x^2 + y^2}{x^2 + y^2 + 1} + e^{-(y^2 + z^2)}$$

defined on all of \mathbb{R}^3 . Does this function have a global maximum? Justify your answer. If it does, find the maximum value.

Problem 2 (8; 4, 4) Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2, f: (x, y, z) \mapsto (x^2 + y^2, 2xyz)$ and let $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, g: (u, v) \mapsto (u - 1, uv, v)$

a) Compute the total derivative (in matrix form) of $g \circ f$ at the point (a, b, c) directly.

b) Compute it using the chain rule.