
18.02 ESG Final Exam Solutions

Spring 2005

Write your name in the top right corner of this page. Work in the space
provided or on the backs of pages. You are allowed five pages of notes and
the use of at most two calculators, but you must show your work to get full
credit and no other aids are allowed.

There are 255 points available. Full credit is 250.

1. [20 points]
Consider the system of equations

x1 + 5 x2 + 3 x3 = 1

x1 + 7 x2 + 7 x3 = 7

3 x1 + 19 x2 + 17 x3 = −2

(a) [3] Rewrite this system in the matrix form Ax = b.
Solution:





1 5 3
1 7 7
3 19 17









x1

x2

x3



 =





1
7

−2





(b) [5] Is A invertible? Justify your answer.
Solution:

No.

det(A) = 1(7 · 17− 7 · 19) + 5(7 · 3− 1 · 17) + 3(1 · 19− 7 · 3) = 0.
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(c) [12] Give all solutions to the system. Make sure to include your
steps.
Solution:

Using Gaussian elimination,





1 5 3
1 7 7
3 19 17

∣

∣

∣

∣

∣

∣

1
7
−2



 →





1 5 3
0 2 4
3 19 17

∣

∣

∣

∣

∣

∣

1
6
−2



 →





1 5 3
0 2 4
0 4 8

∣

∣

∣

∣

∣

∣

1
6
−5



 →





1 5 3
0 1 2
0 4 8

∣

∣

∣

∣

∣

∣

1
3
−5



 →





1 5 3
0 1 2
0 0 0

∣

∣

∣

∣

∣

∣

1
3

−17





The last equation says that 0 = 17, so there are no solutions.

2. [10 points]
Consider the map f : R

5 −→ R
2 given by the formula

f(x, y, z, w, u) = (5x + 2y − 3z + u, u − z + 4w).

What is the dimension of the kernel of f?
Solution:

f is clearly onto. So the dimension of the kernel is 5 − 2 = 3 by the
rank-nullity theorem.

3. [15 points]
Let v = (7, 6, 5) and w = (3, 2, −1). Express v as the sum of two
perpendicular vectors, one of which points in the direction of w. [Hint:
project v onto w

Solution:

The projection of v onto w is v·w
|w|2

w which is 28

14
(3, 2,−1) = (6, 4,−2).

Subtracting this from v gives (1, 2, 7), so (6, 4,−2) and (1, 2, 7) satisfy
the given requirements.
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4. [25 points]
Find all critical points of the function f(x, y, z) = x y3 − z when re-
stricted to the surface x y + y z = −3
Solution:

We use Lagrange multipliers. The equations are

y3 = λy

3xy2 = λ(x + z)

−1 = λy

The first and third equations imply that y3 = −1 so y = −1 and thus
λ = 1. Thus 3x = x + z so z = 2x and therefore xy + y(2x) = −3
implies x = 1 and thus z = 2. So (1,−1, 2) is the only critical point.

5. [20 points]
Consider the function f : R

3 −→ R
2 defined by

f(x, y, z) = (x2 y − 2 x z + 1, 5 z3 + 4 x y2).

Approximate f by a linear function near the point (1, 1, 0).
Solution:

f is approximated by f(1, 1, 0)+Df(1, 1, 0)(x−1, y−1, z). f(1, 1, 0) =
(2, 4) and the matrix of Df(1, 1, 0) is

(

2xy − 2z x2 −2x
4y2 8xy 15z2

)

=

(

2 1 −2
4 8 0

)

so the linear approximation to f is

(x, y, z) 7→ (2+2(x−1)+(y−1)−2(z), 4+4(x−1)+8(y−1)) = (2x+y−2z−1, 4x+8y−8).
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6. [25 points]
Let f(x, y) = 3 x y − x3 − y3. Find and classify all critical points of f .
Solution:

We set all partials equal to zero, obtaining

3y − 3x2 = 0

3x − 3y2 = 0

and thus y = y4 and x = y2 so x = 0 and y = 0 or x = 1 and y = 1.
The second partials are

∂2f

∂x2
= −6x

∂2f

∂xy
= 3

∂2f

∂y2
= −6y

So at (0, 0), we have (0)(0)− (3)2 = −9 < 0 and thus (0, 0) is a saddle.
At (1, 1), we have (−6)(−6) − (3)2 = 27 > 0 and −6 < 0 so (1, 1) is a
maximum.

7. [20 points]
Find the area of the ellipse (4 x−y)2+(x−3 y)2 < 1 using an appropriate
change of coordinates.
Solution:

Set u = 4x − y and v = x − 3y. Then the Jacobian is the inverse of

the absolute value of the determinant of

(

4 −1
1 −3

)

, which is 1

11
. The

integral of the function 1 over our ellipse thus transforms to the integral
of 1

11
over a circle of radius 1 in the uv-plane, which is π

11
.

8. [25 points]
Let F(x, y, z) = (a x2 y + z2, x3 + 4 y3 z, b x z + y4).

(a) [6] For what values of a and b will F be conservative?
Solution:

Take the curl of F and solve for a and b that make it zero.

∇× F = (4y3 − 4y3, 2z − bz, 3x2 − az2),

so b = 2 and a = 3.
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(b) [12] Using these values of a and b, find a function f(x, y, z) such
that F = ∇f .
Solution:

Integrating the x component with respect to x gives f(x, y, z) =
x3y +xz2 + g(y, z), and examining the y and z components shows
that g(y, z) = y4z. So f(x, y, z) = x3y + xz2 + y4z.

(c) [7] Again using these values of a and b, give a defining equation
for a surface S with the property that

∫ Q

P

F·T ds = 0

for any two points P and Q lying on S and any path between
them.
Solution:

By the fundamental theorem of line integrals,

∫ Q

P

F·T ds = f(Q) − f(P ).

This will always be zero if f is constant on S. So in particular,
the surface defined by the equation x3y +xz2 + y4z = 4 will work.
(And don’t be nitpicky and give me the empty set for S.)

9. [15 points]
Let C be the spiral given in polar coordinates by the equation r = θ,
0 ≤ θ ≤ 2π, traced out starting from the origin. Let F(x, y) = (x2, y).
Reduce the following line integral to a single variable integral, but do
not evaluate the resulting single variable integral:

∫

C

F · dr.

Solution: Parameterizing with respect to theta,

∫

C

F·dr =

∫

2π

0

(θ2 cos2 θ, θ sin θ)·(− sin θ, cos θ)dθ =

∫

2π

0

θ sin θ cos θ−θ2 sin θ cos2 θ dθ.
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10. [55 points]
Consider the sphere S of radius 1 centered at the point (0, 0, 1)

(a) [10] Parameterize S. [Hint: how would the parameterizations of
a sphere centered at the origin and a sphere centered at (0, 0, 1)
differ?] There are two easy parameterizations:

x = cos θ sin φ

y = sin θ sin φ

z = 1 + cosφ

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

or

x = 2 cos θ sin φ cos φ

y = 2 sin θ sin φ cos φ

z = 2 cos2 φ

0 ≤ θ ≤ 2π, 0 ≤ φ ≤
π

2

(b) [15] Let f(x, y, z) = x2 z + y2 z − x2 − y2. Compute
∫

S

∫

f(x, y, z) dS.

[Can you tell what the scaling factor (ie |ru × rv|) is at a glance?]
Solution:

If we use the first parameterization, the scaling factor is just sin φ

as in a normal sphere. So
∫

S

∫

f(x, y, z) dS =

ddintS(x2 + y2)(z − 1) dS

=

∫

2π

0

∫ π

0

sin2 φ cos φ sin φ dφ dθ

= (2π)

(

1

4
sin4 φ

∣

∣

∣

∣

π

0

= 0.
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(c) [15] Let F(x, y, z) = (x + 3 y, 2 y − z, 4 z + x). Compute
{

S

F·n dS.

Solution:

Using the divergence theorem, this is just the integral of the func-
tion 1 + 2 + 4 = 7 over the interior of the sphere. So the answer
is 28π

3
.

(d) [15] Now consider just the upper half of S (above the z = 1
plane). Call this surface S1 and equip it with the upward pointing
normal. Let F = (z−y−1, x+z2+z−2, x y2+x z−4). Compute

∫

S1

∫

(∇ × F)·n dS.

Solution:

By Stokes’ theorem, we can just compute a line integral. Setting
z = 1 in F we find that we’re integrating (−y, x, xy2+x−4) around
a circle of radius 1. Using Green’s theorem, this is equivalent to
integrating 2 over the disc of radius 1, so the answer is 2π.

11. [25 points] Consider the part of the surface z = −r2 + 3 r− 2 that
lies above the xy-plane (r is the r of cylindrical coordinates). Call this
surface S. Let

F(x, y, z) = (x + 3 y − sin4(z5), x2 − y2, −z − 4).

Evaluate
∫

S

∫

F·n dS.

[Hint: use the divergence theorem so that the surface integral that you
actually compute is easier.]
Solution: The region is a doughnut shaped thing that is flat on the
bottom and parabolic on top. S is above the xy-plane between r = 1
and r = 2. Note that this region is symmetric about the x-axis, and
the divergence of F is just −2y, so the integral of the divergence over
this region is zero. Thus we can set z = 0 and n̂ = k̂ and integrate
from r = 1 to r = 2. So the answer is (−4)(4π − π) = −12π.
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