
PART 6: ERROR PROPAGATION AND MODEL FITTING



Error Propagation and Model Fitting -6.2-

10/23/04 14:42 ©2004 J L Elliot All rights reserved Notes 2004 Parts 6- 9 0t doc

6.1 ERROR PROPAGATION

Rarely are the data we record—the signals in each pixel of a CCD, for example—exactly
what we are interested in for a final result.  Hence we must use the data as variables in equations
to calculate what we really want to learn.  When we use data in an equation however, we must
learn how the uncertainty (or error) in each quantity in the equation affects the final result.  The
methods used to do this are termed error propagation, and in this section we shall develop these
methods by beginning with simple cases and then progressing to the more complicated ones.  We
shall learn how to combine several measurements of the same quantity into a single value with
the minimum possible error.

Combining Measurements

Suppose that we have a random variable z that is related to two other random variables, x
and y, and the constants a, b, and c with the equation:

z = ax + by + c (6.1)

The random variables x and y are continuous (non-discrete) random variables, described
by the probability density functions px(x) and py(y).  They are independent random variables,
implying that knowing the value of one of them tells us nothing about the other: py(y|x) = py(y)
and px(x|y) = px(x).  We can write the probability density function for z as:

pz z( ) = px x( )py
z ax c

b
 
 

 
 
dx = px

z by c

a
 
 

 
 
py y( )dy (6.2)

Mean

We can calculate the mean, z, of z from its definition [Eq (5.16)] and Eq (6.2):

z = zpz z( )dz = ax + by + c( )px x( )py y( )dxdy

= axpx x( )py y( )dxdy + bypx x( )py y( )dxdy + cpx x( )py y( )dxdy

(6.3)

z = ax + by + c (6.4)
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Variance and Standard Deviation

We calculate the variance and standard deviation with the same approach used above to
calculate the mean:

2 z( ) = z z ( )
2

pz z( )dz = ax + by + c( ) ax + by + c( )[ ]
2
px x( )py y( )dxdy (6.5)

The missing steps can be found by expanding the expression within the integral and
breaking up the sums into separate integrals.

2 z( ) = a2 2 x( ) + b2 2 y( ) (6.6)

Even if z is not a linear function of x and y, we can get an approximate value for the
variance of z by using a Taylor expansion around the point z0 = z(x0, y0) and then approximating
it as a linear function, using the derivatives at z0 as the linear coefficients for x and y.

2 z0( )
z

x

 

 
 

 

 
 
x= x0

2
2 x( ) +

z

y

 

 
 

 

 
 
y= y 0

2

2 y( ) (6.7)

Eq (6.7) holds when x and y are independent, and it will be a good approximation to the extent
that z is a linear function of x and y over intervals in x and y of a few standard deviations [ (x),

(y)] surrounding the point (x0, y0).  If z is a linear function of x and y, then Eq (6.7) is no longer
an approximation, but an exact equation.

Random Variable Arithmetic

We can extend the results of the previous section to include arithmetic operations.

Addition

If z = x + y, then:

2 z( ) = 12 2 x( ) +12 2 y( ) = 2 x( ) + 2 y( ) (6.8)

Subtraction

If z = x – y, then:

2 z( ) = 12 2 x( ) + 1( )
2 2 y( ) = 2 x( ) + 2 y( ) (6.9)

Multiplication

If z = xy, then:
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2 z0( )
z

x
 

 

 

 
x= x 0

2
2 x( ) +

z

y

 

 
 

 

 
 
y= y0

2

2 y( ) = y0
2 2 x( ) + x0

2 2 y( ) (6.10)

For multiplication (and division), a useful parameter is the fractional error of z, defined to be
(z) = (z)/z. This gives the following relationship between the fractional error for z in terms of

the fractional errors for x and y:

2 z( )
2 z( )

z2
y2 2 x( ) + x2 2 y( )

z 2
=

2 x( )

x2
+

2 y( )

y2
=

2 x( ) + 2 y( ) (6.11)

Division

If z = x/y, then (in terms of  as for multiplication):

2 z( )
2 z( )

z2

1

y

 

 
 

 

 
 

2

2 x( ) +
x

y2
 

 
 

 

 
 

2

2 y( )

z 2
=

2 x( )

x 2
+

2 y( )

y2
=

2 x( ) +
2 y( ) (6.12)

Summary

The standard deviations for the sum and difference of two random variables are equal; for
the their product and quotient, the fractional errors are also equal.  The latter result holds when
the appropriate partial derivatives are linear over the range of a few standard deviations of the
two random variables involved in the multiplication or division.

Correlated Random Variables

Until now we have worked with independent random variables; we now include
correlated random variables in our discussion.  If two random variables are correlated, it implies
that they have the same randomness, and knowledge of one of them gives us information about
the other.

If we have random variables x, y, and z, with z  = z(x, y), we define the correlation
coefficient, , with the equation:

x,y( ) =
x x ( ) y y ( )

x( ) y( )
(6.13)

The correlation coefficient satisfies the condition –1.0    1.0.  When x  and y are not
correlated,  = 0.0.  For perfect correlation or anti-correlation (i.e. y = x or y = –x),  = 1.0 and
–1.0 respectively.  Intermediate values of  occur for intermediate correlations.

If the variables x and y have non-zero correlation, then we must modify Eq (6.7) for the
standard deviation of the derived quantity z to include the effect of correlation:
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2 z0( )
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x= x0

2
2 x( ) + 2 x,y( )
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x= x0
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y= y0

x( ) y( ) +
z
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y= y0

2

2 y( ) (6.14)

The contours of constant error in the x-y  plane are ellipses—known as error
ellipses—which have axes parallel to the x and y axes for uncorrelated random variables, but not
parallel for correlated random variables.

Optimum Signal-to-Noise Ratio

Suppose we have a set of measurements {di} of a quantity x.  The set {di} may be a series

of raw data, for which we may have no other knowledge of their standard deviations.  In this case

we assume that all the standard deviations are equal and derive the standard deviation from the

data series as previously described.  However, the set {di} may be a list of actual measurements

(such as instrumental magnitudes for a standard star).  For this case each member of the series

may have its own standard deviation, i (not necessarily equal to each other).

The question arises of how to best use all the input values to arrive at the best estimate for

x.  For us, the "best" estimate will be the one with the lowest error.  Since the errors in the

measurements are not equal, a simple average of the {di} will not, in general, yield the minimum

error (standard deviation) of the final result.  The problem we want to solve in this section is to

determine how to average the measurements in order to maximize S / N = d / d ( ) , which is

equivalent to minimizing d ( ) .  Then our best estimate for x (the one with the lowest error) is

˜ x = d .

Here we shall use the "real" i, rather than the measured value, ˜  i .  (When working with
data, of course, we have to use ˜  i , since that is all we know.  In that case, the results of this

section will be approximate, to the extent that standard deviations determined from data
themselves contain errors.)  It will be instructive to proceed to the desired result in several steps.

Two Measurements with Equal Errors

We have two measurements, (d1, 1) and (d2, 2), with 1 = 2 = .  Since the standard
deviations are equal, we weight them equally with weighting constants, w1 and w2, whose sum is
1: in this case, w1 = w2 = 1/2 (i.e. we average the two values).

d = w1d1 + w2d2 (6.15)

2(d )
d 

d1

 

 
 

 

 
 

0

2

1
2

+
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d2

 

 
 

 

 
 

0

2

2
2

= (w1
2

+ w2
2 ) 2

=

2

2
(6.16)
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(d ) =
2

(6.17)

N Measurements with Equal Errors

Again, we have no reason to weight any one measurement more than any other, so we
select 1/N  as the weighting factor for all:

d = widi
i=1

N

=
1

N
di

i=1

N

=
1

N
di

i=1

N

(6.18)

2(d )
d 

di

 

 
 

 

 
 

i =1

N

0

2

i
2

= wi
2 2

i =1

N

=

2

N2
i =1

N

=

2

N
(6.19)

(d )
N

(6.20)

Two Measurements with Unequal Errors

If we have two measurements with unequal errors, we can choose two different weighting
constants, w1 and w2 whose sum is 1, and write the resulting weighted mean as follows:

d = w1d1 + w2d2 (6.21)

2(d ) = w1
2

1
2
+ w2

2
2
2
= w1

2
1
2
+ (1 w1)

2
2
2 (6.22)

Now we want to choose w1 to minimize the standard deviation in the above equation.  At one

extreme w1 = 1 and d ( )  = 1;  at the other extreme, w1 = 0 and d ( )  = 2.  We can do better

than either extreme.  To find the minimum value of d ( )  as a function of w1, we take the

derivative with respect to w1, set it to zero, and then solve for w1:

d 2 (d )

dw1
= 2w1 1

2 2(1 w1 ) 2
2
= 0 (6.23)

w1 =
2
2

1
2
+ 2

2 =

1

1
2

1

1
2 +

1

2
2

(6.24)
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and

w2 =

1

2
2

1

1
2 +

1

2
2

(6.25)

Note that the denominators for w1 and w2 are the same.  It is common practice to formally define
the weight as the reciprocal of the variance, and then to use the sum to normalize the average (in
this case the normalization is necessary because the sum of the weights does not equal 1).
Hence, we set w1 = 1/ 1

2  and w2 = 1/ 2
2 ; then we can rewrite the above equations as:

d =
w1d1 + w2d2

w1 + w2

(6.26)

2 ( ˜ d ) = w1
2

1
2
+ w2

2
2
2
=

w1
2

1
2
+ w2

2
2
2

w1 + w2
=

1
2

2
2

1
2
+ 2

2 =

1
w1

1
w2

1
w1

+
1

w2

=
1

w1 + w2
(6.27)

(For those familiar with electronics, this equation is analogous to the equation for the total
resistance of two parallel resistors.)

N Measurements with Unequal Errors

For this case we want to find the set of weights, {wi} i = 1, ..., N.

d =

widi
i=1

N

wi
i=1

N (6.28)

2(d ) =
d 

di
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i =1

N

wi
i =1
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2 (6.29)

Now we search for the weights that minimize the variance by taking the derivative of the
above equation with respect to wi:
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d 2 (d )
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=

2wi i
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4 (6.30)

A minimum occurs when the numerator in the above equation equals zero, and we have the
condition:

wi =

wi
2

i
2

i=1

N

i
2 wi
i=1

N (6.31)

A solution to the above equation is wi = c / i
2 , where c is an arbitrary constant.  This yields the

following value for 2(d ) .

2(d ) =

wi
2

i
2

i =1

N

wi
i =1

N 

 
 

 

 
 

2 =

cwi
i =1

N

wi
i =1

N 

 
 

 

 
 

2 =
c

wi
i=1

N =
1
1

i
2

i=1

N (6.32)

In the next section we shall learn how weights are fundamentally connected to using the data to
achieve the most accurate estimate of d .

Measurements with Multiple Noise Sources

For measurements with multiple noise sources that are not correlated with one another,
such as photon noise and scintillation, we express the measured quantity as the sum of its mean
and noise sources, with each of the noise sources having the appropriate variance [e.g. the
squared, un-normalized version of Eq (3.44) for scintillation and Eq (5.8) for photon noise].  The
sum of the variances of noise sources yields the variance of the measurement.
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6.2 MODEL FITTING WITH LEAST SQUARES

In some cases, we know that a given set of data "should" be described by a certain type of
function—a constant, straight line or a sine curve, for example—and the only reason for
deviation from a perfect match to this function is the noise (or random error) in the data.  For
these cases in which the data should fit a known functional form, we can use the method of least
squares to find the parameters of the model that best fits the data.  We can also find the rms
errors in the best fitting parameters.

Describing Data with a Model

Models usually will be described by a set of "coordinates," x, which can vary with each
measurement, and a set of parameters, p, that are constant for a given model.  Model fitting
involves finding the set of the model parameters that best fit the data.

For example, after reducing data taken at the telescope to a set of magnitudes and their
errors, we are often faced with the task of finding a model that "best" fits the results.  Sometimes
we already know that the results should fit a model of a given type (i.e., instrumental magnitudes
should be a linear function of airmass, if conditions were constant during the data recording).
The set of instrumental magnitudes of a standard star and the airmasses at which the instrumental
magnitudes were measured constitute the data set.  The airmasses are the coordinates, and the
parameters of the model are (i) the instrumental magnitude of the standard star at zero airmass,
and (ii) the extinction coefficient (k, in magnitudes per airmass).

For each measurement of the set, a given model will yield a mean of the measurements,
which can be calculated from the coordinates and parameters, using the prescription of the
model.  From here on, we shall refer to the data values as vi instead of di, in order to avoid
confusion with d  as standard notation in differential calculus.  So the mean of the ith
measurement is a function of the model, m, at the ith coordinate:

v i = mi (6.33)

mi = m(x i,p) (6.34)

where the ith coordinate may be composed of several components:

x i ={(x, y, z, .. .)i} (6.35)

We use the index j for the set of parameters:

p ={pj} (6.36)

Adjusting the Model with "Least Squares"

How do we choose the best set of parameters, p?  What are the errors in the best set of
parameters?  We can answer these questions under some fairly general assumptions:
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1. The noise in the measurements follows a Gaussian distribution.

2. The mean of the distribution is a function of a model, chosen from a class of models that are
described by "coordinates" and "parameters."

3. All measurements have a standard deviation  about their local mean.  We can later relax this
assumption to allow the standard deviation of each measurement to be different.

The main goal of the following derivation is to find the set of model parameters that gives
the maximum probability for the particular set of measurements obtained.  Another way of
thinking of this is that we are trying to find the model that best fits the measurements.

For the ith measurement, vi, we assume that the measurements follow a Gaussian
distribution, with a mean

p(vi )dvi =
1

2 2
exp

(vi v i )
2

2 2

 

  

 

  
dvi (6.37)

We define v to be the entire set {vi}, pv(v) to be the product of all the density functions,

and dv to be the product of all the differentials, dvi.  Then the probability density for the entire

set is the product of the probability densities for each measurement.  In the equation below, the

symbol f
i

i= 1

N

 denotes the product f1f2 ... fN.

pv (v)dv = p(vi )dvi
i=1

N

=
1

2 2
exp

(vi v i )
2

2 2

 

  

 

  
dvi

i=1

N

(6.38)

pv (v)dv =
1

2 2( )
N / 2 exp

(vi v i )
2

2 2

 

  

 

  
dvi

i=1

N

(6.39)

pv (v)dv =
1

2 2( )
N / 2 exp

(vi v i )
2

i=1

N

2 2

 

 

 

 

 

 

 

 

 

 

dv (6.40)

Since we do not know the mean of each measurement, we have to use our estimates from
the measurements, ˜ v i .  Defining the residual, ri, as the difference between the data and the

model, ( i
˜  i) , we can reformulate Eq (6.40) in terms of measured quantities (except for the

standard deviation):
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˜ p v (v)dv =
1

2 2( )
N / 2 exp

(vi
˜ v i)

2

i =1

N

2 2

 

 

 
 
 
 

 

 

 
 
 
 

dv

=
1

2 2( )
N / 2 exp

ri
2

i =1

N

2 2

 

 

 
 
 
 

 

 

 
 
 
 

dv

(6.41)

We maximize the probability density by minimizing the sum in the exponent of the last
equation—which minimizes the sum of the squared differences between the data and the model.
So the most probable model is that which has the minimum sum of squared residuals.

We can generalize Eq (6.41) for data that have unequal standard deviations.  If the ith
data value has a standard deviation i, then we return to Eq (6.38) and proceed by keeping the i

inside the product.  Following the steps used to arrive at Eq (6.41) we find:

˜ p v (v)dv =
1

2( )N / 2 exp
1

2

ri
2

i
2

i =1

N 

 
 

 

 
 

1

i
2

i =1

N

dv (6.42)

Note that the exponential is outside the product term.  For economy of notation we define the
weight  wi = 1 / i

2  for each data value, and rewrite Eq (6.42) as:

˜ p v (v)dv =
1

2( )N / 2 wi
i =1

N 

 
 

 

 
 exp

1

2
wiri

2

i =1

N 

 
 

 

 
 dv (6.43)

So for the more general case for data with unequal errors, the most probable model is that which
minimizes the sum of the weighted squared residuals.

Modeling Data as a Constant

If we think that the variations of all the measurements in a data set are just random
variations about a constant mean, then we model the data as a constant, a0.  In this model, the
mean of each measurement is  i = a0 .  To find our best estimate of the constant, ˜ a 0 , we want to
minimize the sum of squared residuals between the measurements, vi., and ˜ a 0 .  In this case each
residual is the difference, (vi

˜ a 0 ) , so the desired sum of weighted squared residuals is given by

wi(vi
˜ a 0)

2

i=1

N

(6.44)

We minimize the sum by taking the derivative with respect to ˜ a 0 , setting it to zero, and then
solving for ˜ a 0 :
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wi(vi ˜ a 0)
2

i=1

N

˜ a 0
= 0

= wi

(vi
˜ a 0 )2

˜ a 0i=1

N

= wi 2vi + 2˜ a 0( )
i=1

N

. (6.45)

This leads to

2wi
˜ a 0

i=1

N

= 2wivi
i=1

N

(6.46)

Solving for ˜ a 0 ,

˜ a 0 =

wivi
i =1

N

wi
i =1

N (6.47)

If all the standard deviations are equal, this implies all the weights are equal and Eq (6.47)
simplifies to:

˜ a 0 =
1

N
vi

i=1

N

(6.48)

Hence the least squares fit of data modeled as a constant is just the (weighted) average of the
data points.  Stated another way, the sum of squared residuals between a set of data and a
constant is minimized of the constant is chosen to be the (weighted) average of the data values.
If all the standard deviations are equal, then the weighted average becomes the average.

For the case when  ˜ a 0  is an average of N measurements of equal errors, Eq (6.20), then:

(˜ a 0 ) =
N

(6.49)

and, according to Eq (5.25),

˜  (˜ a 0 ) =
1

N

1

N 1
(vi ˜ a 0 )2

i=1

N 

 
 

 

 
 

1/ 2

(6.50)
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We use Eq (6.49) when the standard deviation of each data point is known from other
information, but we use Eq (6.50) when we are determining the standard deviation from the
scatter of the data from their average.

Modeling Data as a Line

Next, we consider the least squares solution of a line with constant term a0 and slope a1,
described by the equation:

v i = a0 + a1(xi x0 ) (6.51)

Our goal is to find the "best" values of a0 and a1.  Objectively, this means finding the values that
minimize the sum of the squared residuals between the line and the data.  We define wi, the
weight of the ith point as the inverse of the variance for that point:

wi =
1

i
2 (6.52)

Using our previous definition of ri as the difference between the model and each data point, the

sum of squared residuals can be written:

wiri
2
=

i=1

N

wi vi
˜ a 0 + ˜ a 1(xi x0 )[ ]{ }

2

i=1

N

(6.53)

To minimize the right-hand side of Eq (6.53), we take the partial derivatives of the sum with
respect to the parameters a0 and a1 and set them to zero:

wi vi ˜ a 0 + ˜ a 1(xi x0)[ ]{ }
2

i=1

N

˜ a 0
= 2wi vi

˜ a 0 + ˜ a 1(xi x0 )[ ]{ }
i=1

N

= 0 (6.54)

wi vi ˜ a 0 + ˜ a 1(xi x0)[ ]{ }
2

i=1

N

˜ a 1
= 2wi(xi x0 ) vi

˜ a 0 + ˜ a 1(xi x0 )[ ]{ }
i=1

N

= 0 (6.55)

Setting the above two equations equal to zero and rewriting them to collect terms, we have the
following pair of linear equations for ˜ a 0  and ˜ a 1:

˜ a 0 wi
i=1

N

+ ˜ a 1 wi(xi x0 )
i=1

N

= wivi
i=1

N

˜ a 0 wi (xi x0 )
i=1

N

+ ˜ a 1 wi(xi x0 )2

i=1

N

= wivi(xi x0 )
i=1

N
(6.56)
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Before writing the solution to these linear equations, we by adopt more compact notation, as
defined below:

w wi
i=1

N

wx wi
i=1

N

(xi x0 ) wv wi
i=1

N

vi

wxx wi
i=1

N

(xi x0 )
2

wvx wi
i=1

N

vi(xi x0) wxx w wx
2

(6.57)

Solving Eq (6.56) for ˜ a 0  and ˜ a 1 with the definitions of Eq (6.57) we find:

˜ a 0 =
wxx wv wx wvx (6.58)

˜ a 1 =
wvx w wx wv (6.59)

Eqs (6.57) and (6.58) will be useful in a variety of applications, such as in the analysis of
extinction data, where the slope ( ˜ a 1) is the extinction coefficient, and the intercept ( ˜ a 0 ) is the
zero point correction for the instrumental magnitude.

In order to write expressions for the errors in the slope and intercept, we shall need the
weighted sum of the squared residuals, which is as follows:

wrr wiri
2

i=1

N

= wi vi
˜ a 0 + ˜ a 1(xi x0 )[ ]{ }

2

i=1

N

(6.60)

The errors in the intercept and slope are given by:

˜  2( ˜ a 0 ) = wrr wxx

N 2( )
(6.61)

˜  2( ˜ a 1) = wrr w

N 2( )
(6.62)

The division by N – 2 (not derived here) occurs because of the two free parameters used in fitting
the line, analogous to the division by N – 1 for fitting a constant [Eq (5.A.9)].

An assumption of the preceding derivation is that all variances, i, are known, and these
were used to establish the weights, wi, through Eq. (6.52).  Another common situation is that the
variances are not known, but they can be assumed to be equal for each measurement.  For this
case, one sets all weights equal to 1 and calculates the common variance, ˜  2 , with the equation:
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˜  2 = wrr

N 2( )
(6.63)

Eq. (6.63) can also be used in the case where the relative weights are known, but there is an
unknown common scale factor among them.

The correlation coefficient [Eq (6.13)], ˜ a 0 , ˜ a 1( ) , (where 1 ˜ a 0 , ˜ a 1( ) 1) is given by the

equation:

˜ a 0 , ˜ a 1( ) = wx

w wxx

(6.64)

The covariance, cov ˜ a 0, ˜ a 1( ) , is the product of the correlation coefficient of these two quantities

and their standard deviations:

cov ˜ a 0, ˜ a 1( ) = ˜ a 0, ˜ a 1( ) ˜ a 0( ) ˜ a 1( ) = wrr wx

N 2( )
(6.65)

As we shall see later, it will sometimes be convenient to select the parameter x0 so that their
correlation coefficient, ˜ a 0 , ˜ a 1( ) , will be zero.  We can do this by substituting wx = 0 in its

definition in Eq (6.57) and then solving for x0:

x0 =

wixi
i=1

N

w

(6.66)

Having values for ˜ a 0 and ˜ a 1, we can now generalize Eq (6.48) to apply for any x, not just
an xi for which we have data:

˜ v = ˜ a 0 + ˜ a 1(x x0) (6.67)

The error for any ˜   will depend on the errors in ˜ a 0  and ˜ a 1, and we can write an equation

for the error in the value of ˜   for any x:

˜  2 (˜  ) =

˜  
˜ a 0

 

 
 

 

 
 

2

˜  2( ˜ a 0 ) + 2
˜  
˜ a 0

 

 
 

 

 
 

˜  
˜ a 1

 

 
 

 

 
 cov( ˜ a 0, ˜ a 1) +

˜  
˜ a 1

 

 
 

 

 
 

2

˜  2 ( ˜ a 1) (6.68)

Substituting the values for the partial derivatives:

˜  2 (˜  ) = ˜  2 ( ˜ a 0 ) + 2(x x0 )cov( ˜ a 0, ˜ a 1) + (x x0)
2 ˜  2 ( ˜ a 1) (6.69)
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This can be written in another form by substituting values for the variances and covariances:

˜  2( ˜  ) = wrr

N 2( ) wxx
2 2 x x0( ) wx + x x0( )

2

w[ ] (6.70)

If x0 has been chosen to satisfy Eq (6.66), then cov ˜ a 0, ˜ a 1( )  will be zero and we have the simpler

form:

˜  2( ˜  ) = ˜  2 ( ˜ a 0 ) + (x x0)
2 ˜  2 ( ˜ a 1 ) = wrr

N 2( ) wxx
2

+ x x0( )
2

w[ ] (6.71)

Inspection of Eq(6.71) shows us that the error in our estimate of a value, ˜ v (x) , from our fitted
line is a minimum for x = x0, and grows quadratically as the values of x depart from x0.  In other
words, we have our best knowledge at the (weighted) average x-coordinate of our data and the
errors get larger as we depart from it (or even extrapolate the fitted line well beyond the range of
the data).

Other Models

Other common models that can easily be fitted to data with the least-squares method are
higher order polynomials and Fourier series.  If the variable parameters of the model are the
coefficients of these series, then all derivatives of the model function with respect to the model
parameters are constants, and the problem has an exact solution that can be found by extending
the method that we just used for fitting a straight line.  Such methods are examples of linear
least-squares methods.  We also can extend the least-squares method to non-linear models, such
as a sine wave in which we are fitting not only the amplitude but the frequency as well.  The
approach is to approximate these functions with a Taylor expansion in the region of interest,
which reduces the problem to a linear one.  Non-linear least-squares methods are commonly used
for modeling data, but are beyond the scope of these notes.

Internal Errors and External Errors

The internal error of a quantity derived from a data set is calculated by propagating the
errors derived from the scatter of the fundamental data points.  The external error is calculated
from the deviations of the data points from a model.  If the two "agree," then we believe that we
understand our data.  If there is doubt, one can perform statistical tests, such as the chi-square
test, or acquire more data.  Usually the latter leads to more firm conclusions.
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