These problems are related to the material covered in Lectures 8-9. I have made every effort to proof-read them, but there are may be errors that I have missed. The first person to spot each error will receive 1-5 points of extra credit.

The problem set is due by 5pm on 10/02/2020 and should be submitted electronically as a pdf-file e-mailed to zzyzhang@mit.edu and roed@mit.edu (please include "18.782" in the subject of the email). You can use the latex source for this problem set as a template for writing up your solutions; be sure to include your name in your solutions and remember to identify all collaborators and any sources that you consulted that are not listed in the syllabus.

Problem 1. A stronger form of Hensel's lemma. (30 points)

(a) Let $f \in \mathbb{Z}_p[x]$ and suppose $|f(a)|_p < |f'(a)|_p^2$ for some $a \in \mathbb{Z}_p$. Let $a_1 = a$, and for $n \ge 1$ let

$$a_{n+1} = a_n - f(a_n)/f'(a_n).$$

Prove that this defines a Cauchy sequence (a_n) in \mathbb{Z}_p whose limit *b* uniquely satisfies f(b) = 0 and $|a - b|_p < |f'(a)|_p$, and moreover, $|f'(a)|_p = |f'(b)|_p$. (you may find it helpful to reword this in terms of v_p and work with congruences modulo powers of *p*).

- (b) Prove that the hypothesis in (a) is necessary in the following sense. Suppose that b is a simple root of a polynomial $f \in \mathbb{Z}_p[x]$. Prove that for any $a \in \mathbb{Z}_p$, if $|a-b|_p < |f'(b)|_p$ then $|f(a)|_p < |f'(a)|_p^2$. Conclude that if no $a \in \mathbb{Z}_p$ satisfies the hypothesis of (a), then f(x) does not have a simple root in \mathbb{Z}_p .
- (c) Use (a) to compute a square root of 57 in \mathbb{Z}_2 to 16 digits of 2-adic precision using a = 1. How many a_n do you need to compute to achieve this precision?

Problem 2. A faster form of Hensel's lemma. (20 points)

(a) Let R be a commutative ring, let $f \in R[x]$, and let $m \in R$. Suppose that $x_0, z_0 \in R$ satisfy $f(x_0) \equiv 0 \mod m$ and $f'(x_0)z_0 \equiv 1 \mod m$ (note that $a \equiv b \mod m$ simply means that a - b is an element of the R-ideal (m)). Let

$$x_1 = x_0 - f(x_0)z_0,$$

$$z_1 = 2z_0 - f'(x_1)z_0^2.$$

Prove that

- (i) $x_1 \equiv x_0 \mod m$,
- (ii) $f(x_1) \equiv 0 \mod m^2$,
- (iii) $f'(x_1)z_1 \equiv 1 \mod m^2$,

and that (i) and (ii) uniquely characterize x_1 modulo m^2 .

- (b) Use part (a) to compute a cube-root of 9 in the ring \mathbb{Z}_{10} to 64 digits of 10-adic precison by working modulo $10, 10^2, 10^4, 10^8, 10^{16}, 10^{32}, 10^{64}$.
- (c) Prove that Fermat's last theorem is false in \mathbb{Z}_{10} .

Problem 3. Applications of Hensel's lemma (50 points)

Recall that every element of \mathbb{Q}_p^{\times} can be uniquely written as $p^r u$ with $r \in \mathbb{Z}$ and $u \in \mathbb{Z}_p^{\times}$. Let $\mathbb{Q}_p^{\times n} = \{x^n : x \in \mathbb{Q}_p\}$ denote the set of *n*th powers in \mathbb{Q}_p^{\times} .

- (a) For all odd primes p, prove that $p^r u$ is a square in \mathbb{Q}_p^{\times} if and only if r is even and u is a square modulo p. Conclude that $\mathbb{Q}_p^{\times/2}/\mathbb{Q}_p^{\times 2} \simeq (\mathbb{Z}/2\mathbb{Z})^2$ (as finite abelian groups).¹
- (b) Using the strong form of Hensel's lemma, prove that $2^r u$ is a square in \mathbb{Q}_2^{\times} if and only if r is even and $u \equiv 1 \mod 8$. Conclude that $\mathbb{Q}_2^{\times}/\mathbb{Q}_2^{\times 2} \simeq (\mathbb{Z}/2\mathbb{Z})^3$.
- (c) Determine the structure of $\mathbb{Q}_p^{\times}/\mathbb{Q}_p^{\times n}$ for all primes p and odd primes n.

Let $\mu_{n,p} = \{x \in \mathbb{Q}_p : x^n = 1\}$ denote the set of *n*th roots of unity in \mathbb{Q}_p .

- (d) Prove that $\mu_{n,p}$ is a subgroup of \mathbb{Z}_p^{\times} .
- (e) Use Hensel's lemma to prove that for $p \nmid n$ the group $\mu_{n,p}$ is cyclic of order gcd(n, p-1).
- (f) Let p be odd. Use the strong form of Hensel's lemma to prove that $\mu_{p,p}$ is trivial. Conclude that there are exactly p-1 roots of unity in \mathbb{Q}_p (be sure to address $\mu_{p^r,p}$).
- (g) Prove that $\mu_{4,2} = \mu_{2,2} = \{\pm 1\}$. Conclude that ± 1 are the only roots of unity in \mathbb{Q}_2 .

Problem 4. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how interesting you found the problem $(1 = \text{``mind-numbing,''} \ 10 = \text{``mind-blowing''})$, and how difficult you found the problem $(1 = \text{``trivial,''} \ 10 = \text{``brutal''})$. Also estimate the amount of time you spent on each problem.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			

Feel free to record any additional comments you have on the problem sets or lectures; in particular, how you think they might be improved.

¹Anytime $\mathbb{Z}/p\mathbb{Z}$ (or any ring for that matter) appears in a context where a group is required, you can assume it is the additive group that is being referred to (one uses $(\mathbb{Z}/p\mathbb{Z})^{\times}$ for the multiplicative group).