
18.782 Introduction to Arithmetic Geometry Fall 2020

Problem Set #12 Due: 12/9/2020

These problems are related to the material covered in Lectures 33-35. I have made every
effort to proof-read them, but some errors may remain. The first person to spot each error
will receive 1-5 points of extra credit.

The problem set is due by 10:00pm on 12/9/2020 and should be submitted electronically
as a pdf-file e-mailed to zzyzhang@mit.edu and roed@mit.edu (please include “18.782”
in the subject of the email). Due to MIT end-of-term regulations and to give Zhiyu enough
time to grade the homework, no extensions will be given: if you have not submitted the
assignment by 10pm it will count as your dropped problem set for the term. As usual, you
can use the latex source for this problem set as a template for writing up your solutions; be
sure to include your name in your solutions and to identify collaborators and any sources
not listed in the syllabus.

Problem 1. Jacobians of hyperelliptic curves (60 points)

Suppose k is a perfect field with char(k) 6= 2 and C/k is a hyperelliptic curve of the form
y2 = f(x) with f(x) monic and squarefree of degree 2g + 1. Recall that the Jacobian of C
is defined as the quotient JC = Div0(C)/Princ(C) of divisors of degree 0 by the subgroup
of principal divisors. In this problem we will describe a method due to David Cantor for
computing in this group explicitly. We remark that there are similar algorithms available for
other models of hyperelliptic curves (e.g. if f(x) has degree 2g+ 2), as well as a completely
different approach using Riemann-Roch spaces due to Khuri-Makdisi.

(a) Let P∞ be the unique point at infinity on C. Show that any divisor of degree 0 is
equivalent to a divisor of the form

∑r
i=1 Pi − r · P∞, where Pi 6= P∞.

(b) We say that such a divisor is semi-reduced if there is no pair Pi = (x, y) and Pj =
(x,−y) with i 6= j (in particular, this implies that the multiplicity of any point with
y = 0 must be 1). A semi-reduced divisor is reduced if r ≤ g. Prove that every divisor
is equivalent to a unique reduced divisor.

(c) (Mumford coordinates) Given a semi-reduced divisor D =
∑r

i=1 ·Pi − r · P∞ with
Pi = (xi, yi), let a =

∏
i(u−xi) ∈ k̄[u] and let mi be the multiplicity of Pi. Show that

there is a unique polynomial b ∈ k̄[u] so that

(i) b(u)− yi is divisible by (u− xi)mi ,

(ii) deg(b) < r.

Conversely, a and b determine D since a determines the xi and then b determines the
yi. We write D = div(a, b).

(d) Show that D is defined over k if and only if a, b ∈ k[u].

(e) Given two semi-reduced divisors D1 = div(a1, b1) and D2 = div(a2, b2), we’d like to
describe the Mumford coordinates of D1 +D2 in terms of a1, b1, a2 and b2. We make
the simplifying assumptions that gcd(a1, a2) = 1 (all of the points in the summands
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have distinct x-coordinates) and that no y-coordinate is 0 for any point in the support
of either divisor. Define h1 and h2 by

1 = a1h1 + a2h2,

and a, b by

a = a1a2

b ≡ h1a1b2 + h2a2b1 (mod a).

Show that D1 +D2 = div(a, b).

(f) (optional due to tedious casework) In general, let d = gcd(a1, a2, b1 + b2) and define
h1, h2, h3 by

d = a1h1 + a2h2 + (b1 + b2)h3,

and a, b by

a = a1a2/d
2

b ≡ (h1a1b2 + h2a2b1 + h3(b1b2 + f))/d (mod a).

Show that the numerator in the definition of b is divisible by d and that D1 + D2 =
div(a, b). Remark: If D1 = D2 then b ≡ b1 + h3(f − b21)/d (mod a).

(g) The algorithm in (e) and (f) expresses D1 + D2 as a semi-reduced divisor, but in
order to test for equality in the Jacobian we also need a reduction process. Suppose
that D = div(a, b) is semi-reduced; we’d like to find an equivalent reduced divisor.
Set

a′ = (f − b2)/a,
b′ ≡ −b (mod a′),

and E = div(a′, b′). Show that the numerator in the definition of a′ is divisible by a,
and that E−D is the principal divisor associated to the function b(x)− y. Moreover,
show that if deg(a) = m ≥ g + 2 then deg(a′) ≤ m − 2, while if deg(a) = g + 1 then
deg(a′) ≤ g. So repeating this process produces a reduced divisor equivalent to D.

(h) (optional due to trickiness: this was the main contribution of Cantor) Use the extended
Euclidean algorithm to find polynomials c, d so that setting E = −(div(c(x)b(x) −
d(x)y)−D) yields a reduced divisor in one step (here div is the principal divisor asso-
ciated to a function on C). The algorithm described in (g) requires O(g3) arithmetic
operations (or O(g2 log(g)) if fast multiplication is used), while it is possible to save
a factor of g by computing c and d separately.

Problem 2. Weil polynomials (40 points)

In this problem you will find an algorithm for producing all integer polynomials of degree
d all of whose roots have absolute value

√
q for an integer q. You may find the following

results useful:

Theorem (Rolle’s theorem). Suppose f : [a, b] → R is continuous on [a, b], differentiable
on (a, b), and f(a) = f(b). Then there exists c ∈ [a, b] with f ′(c) = 0.



Theorem (Descartes’ rule of signs). Suppose f(x) ∈ R[x] is a polynomial, and let m be the
number of sign changes in the coefficients of f , ignoring zeros (e.g. if all coefficients are
positive then m = 0). Then the number of positive roots of f is at most m, and is congruent
to m modulo 2.

Theorem (Newton identities). Suppose f(x) =
∑g

i=0 aix
i = ag

∏g
i=1(x− ri). Define

sm =

g∑
i=1

rmi .

Then

mag−m +

m−1∑
j=0

ag−jsm−j = 0 (m = 1, . . . , g).

(a) Let SN,q ⊂ Z[x] be the set of polynomials of degree N all of whose roots have absolute
value

√
q, and let Tg,q ⊂ Z[x] be the set of polynomials of degree g all of whose roots

are real and within the interval [−2
√
q, 2
√
q]. Say that f ∈ S2g,q is traceable if the

multiplicity of
√
q as a root of f is even. Prove that

S2g,q ↔ Tg,q

xgf(x+ q/x)←[ f

c

g∏
i=1

(x− αi)(x− ᾱi) 7→ c

g∏
i=1

(x− αi − ᾱi)

define mutually inverse bijections between traceable elements of S2g,q and Tg,q.

(b) Show that every f ∈ S2g+1,q is divisible by either x−√q or x+
√
q (and, in particular,

is empty if q is not a square). It thus suffices to enumerate Tg,q for each g and q.

(c) Elements of S2g,q have 2g + 1 coefficients, which seems like more degrees of freedom
than the g + 1 coefficients needed to specify elements of Tg,q. We can resolve this

discrepancy as follows. Show that, if f =
∑2g

i=0 aix
i ∈ S2g,q then either

(i) ai = qg−ia2g−i for i = 0, . . . , g if f is traceable,

(ii) ai = −qg−ia2g−i for i = 0, . . . , g if f is not traceable.

(d) Show that differentiation induces a map D : Tg,q → Tg−1,q. Show that the fiber above
any polynomial f(x) is either empty or of the form {F (x) + d : d ∈ I ∩ Z}, where
f(x) = F ′(x) and I is a closed interval depending on F .

(e) Use (c) to describe an iterative algorithm for finding the monic elements of Tg,q (and
thus of S2g,q and S2g+1,q).

(f) (optional) Execute the case g = q = 2. Either run your algorithm by hand, or
implement and run it on a computer, and confirm that you find 35 traceable Weil
polynomials.

(g) The basic algorithm described above can be improved by attempting to narrow the
intervals early in order to avoid traversing down paths that eventually lead to no
solutions (though you won’t see this behavior in small cases such as g = q = 2). One



can also modify it to allow for congruence conditions on the coefficients of the eventual
element of S2g,q (this is useful when applying the Weil conjectures to p-adic methods
for computing zeta functions, since working with a finite p-adic precision eventually
yields congruences on the coefficients). Flesh out at least one improvement to the
algorithm you gave in part (d).

Problem 3. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how
interesting you found the problem (1 = “mind-numbing,” 10 = “mind-blowing”), and how
difficult you found the problem (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem.

Interest Difficulty Time Spent

Problem 1

Problem 2

You should also make sure to fill out the MIT course survey; I’m also happy to hear
suggestions personally (by Zulip or email) for improving the class if I teach something
similar again in the future.


