
18.782 Introduction to Arithmetic Geometry Fall 2020
Lecture #38 12/9/2020

We finish the semester with a discussion of abelian varieties over finite fields and the
Honda-Tate theorem. This theorem gives a bijection between abelian varieties over finite
fields and Weil polynomials. We give a rough outline of the proof and a discussion of what
we can say about abelian varieties in terms of this bijection. For more details see [1]. The
Honda-Tate theorem also provides the foundation for the database of abelian varieties in
the LMFDB,1 since it reduces their enumeration to the enumeration of Weil polynomials
as in Problem Set 12.

38.1 The Honda-Tate theorem

Fix a finite field k = Fq; all varieties in this lecture will be defined over k. Recall that an
isogeny between two abelian varieties is a surjective map ψ : A→ B with finite kernel. Given
such a map, there is a dual isogeny ψ̂ : B → A with the property that ψ ◦ ψ̂ = [deg(ψ)]B
and ψ̂ ◦ψ = [deg(ψ)]A. We say that A is isogenous to B if there is an isogeny A→ B. The
existence of dual isogenies shows that this is an equivalence relation; the equivalence class
containing A is called its isogeny class.

A central role in the proof of the Honda-Tate theorem is played by the endomorphism
ring Endk(A) and the endomorphism algebra E = End0

k(A) = Endk(A) ⊗ Q.2 We will
denote the Frobenius morphism as πA : A→ A, and consider it as an element of Endk(A).
In general the ring Endk(A) is not commutative, but πA is central. We may thus consider
the field F = Q(πA) generated by πA as a subring of E.

Definition 38.1. An abelian variety A is simple if the only abelian subvarieties A′ ⊆ A
are A′ = 0 and A′ = A. It is absolutely simple (or geometrically simple) if the base change
Ak̄ to k̄ is simple.

One can detect whether an abelian variety is simple using its endomorphism algebra.
In order to describe the result, we need a bit of noncommutative algebra.

Definition 38.2. If F is a field, an F -algebra is a ring E equipped with a ring homomor-
phism F → E. Such an algebra is central if zx = xz for all z ∈ F and x ∈ E. A (two-sided)
ideal is an additive subgroup I ⊆ E so that αx ∈ I and xα ∈ I for all α ∈ E and x ∈ I. An
algebra is simple if its only two sided ideals are 0 and E. A division algebra is an algebra
where every element has a multiplicative inverse.

Theorem 38.3 (Wedderburn’s theorem). If E is a central simple F -algebra then there is
an integer d and a central division F -algebra D so that E ∼= Md(D).

Using this theorem, we can define an equivalence relation on the set of central simple
F -algebras: two algebras are Brauer equivalent if their corresponding division algebras are
isomorphic. The set of central simple F -algebras has a natural group structure, since the
tensor product over F of two central algebras is still central and simple. This product

1http://www.lmfdb.org/Variety/Abelian/Fq/
2One explanation for tensoring with Q is the following interpretation of isogeny classes. If you define

a category whose objects are abelian varieties over k and where the morphisms from A to B are given by
Homk(A,B)⊗Q then the isomorphism classes in this category will exactly correspond to the isogeny classes.
The reason for this is that, after tensoring with Q, multiplication by any integer n becomes an isomorphism.
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descends to the set of Brauer equivalence classes; the Brauer group Br(F ) is the resulting
group. For example, the Brauer group of any algebraically closed field is trivial, and Br(R) ∼=
Z/2Z: the identity is the Brauer class of R and the nontrivial class is represented by the
quaternion algebra H = {a + bi + cj + dk : a, b, c, d ∈ R} with i2 = j2 = k2 = ijk = −1.
The dimension over F of a central simple F -algebra is always a square.

The computation of the Brauer groups for local and global fields is one of the core results
of class field theory.3 If K/Qp is finite then Br(K) ∼= Q/Z, and if F is a number field then
there is a short exact sequence

0→ Br(F )→
⊕
v

Br(Fv)→ Q/Z→ 0,

where we identify Br(R) with 1
2Z/Z and the map to Q/Z is the sum of all the coordinates.

If [E] ∈ Br(F ) is the class of a central simple F -algebra E we write invv(E) for the image
of [E] in Br(Fv) ∼= Q/Z. We say that E is split at v if invv(E) = 0, ie if E⊗F Fv is a matrix
algebra over Fv. If E is not split at v we say it ramifies at v. This is used primarily for
quaternion algebras (central simple F -algebras of dimension 4) where specifying the set of
ramified places (any finite set with even cardinality) is enough to describe the quaternion
algebra up to isomorphism.

We can now state the Honda-Tate theorem. A Weil q-number is a root of a Weil
polynomial (all of whose roots have absolute value

√
q; we say that two Weil numbers are

conjugate if they have the same minimal polynomial.

Theorem 38.4. Let k = Fq, with q = pa.

1. The map A 7→ πA defines a bijection between the set of k-isogeny classes of simple
abelian varieties over k and the set of Weil q-numbers up to conjugacy.

2. If A is simple then End0
k(A) is a central division F -algebra, where F = Q(πA).

3. The division algebra E splits at all finite places not dividing p, is ramified at every
real place of F , and for any place v dividing p we have

invv(E) =
v(πA)

v(q)
· [Fv : Qp].

4. We have
2 dim(A) = [E : F ]1/2 · [F : Q].

In particular, if h(x) is the minimal polynomial of πA then the characteristic polyno-

mial of πA on H1
ét(A,Q`) is h(x)

√
[E:F ].

38.2 Proof sketch

The fact that πA is the root of a Weil q-polynomial follows from the Weil conjectures, since
the Weil polynomial P1(T ) is the characteristic polynomial of Frobenius. To see that the
map A 7→ πA is injective, suppose that B is another abelian variety with πA = πB (up to
conjugacy), both roots of an irreducible polynomial h. One can check that, since A and B
are simple, the characteristic polynomial of Frobenius is a power of h(x) in each case, and

3there is a cohomological interpretation in terms of the Galois cohomology groups that we defined in
Lecture 36: for any field K there is an isomorphism Br(K) ∼= H2(Gal(Ksep/K), (Ksep)×)
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thus one characteristic polynomial divides the other. This implies that A is isogenous to an
abelian subvariety of B (or vice versa). Since both are simple, this must be B itself.

Surjectivity is harder; say that a Weil q-number π is effective if it is in the image of
the map A 7→ πA. The basic idea is to use the theory over the complex numbers to find
a complex abelian variety with endomorphism algebra L, where L is a CM-field4 so that
E⊗F L is a matrix algebra over L. One then checks that this descends to an abelian variety
over a number field (or p-adic field) with good reduction and so that the reduction has Weil
number πN for some N ∈ Z. One can then use the theory of Weil restriction of scalars5 to
show that, if πN is effective then so is π.

The rest of the statements involve computations with the endomorphism algebra and
the Tate algebra of A.

38.3 Using the Weil polynomial

Many properties of the abelian variety are invariant under isogeny and can be read off of
the Weil polynomial. Let A be an abelian variety of dimension g over Fq and f(x) the
characteristic polynomial of the Frobenius endomorphism of A.

1. The decomposition of A as a direct sum of simple factors (up to isogeny) matches
the factorization of f(x) into irreducibles. The exponents can be a bit off, since when
A is simple f(x) will be the eth power of an irreducible Weil polynomial. Here e =√

[E : F ] can be computed in terms of the least common denominator of v(πA)
v(q) [Fv : Qp]

for places v over p (together with 1/2 if F is real).

2. When m is relatively prime to q, the m-torsion subgroup A[m] over k̄ is isomorphic to
(Z/mZ)2g. But when p divides m the size drops: #A[p] is a power pb of p between 1
and pg. The integer b can be read off of f(x): it is the number of slope 0 components
of the Newton polygon of f(x).

3. The largest possible endomorphism algebra occurs when F = Q and [E : F ] = (2g)2.
This occurs precisely when E is isogenous to a product of supersingular elliptic curves,6

or if all slopes of the Newton polygon are 1/2. At the opposite extreme, the coefficient
of xg in f will be relatively prime to p if and only if #A[p] = pg; in this case A is
called ordinary. For elliptic curves these are the only two possibilities, but in higher
dimension there are other intermediate Newton polygons.

4. The number of Fq points on A is #A(Fq) = f(1).

5. If A is isogenous to the Jacobian of a genus g curve C then the point counts of C
are determined using the zeta function (and are, in particular, an isogeny invariant).
For some A this would yield a negative count, or a count where the number of points
drops from Fq to Fqj for some j; such A cannot possibly be the Jacobian of a curve.
The converse does not hold. We have good methods for determining whether A is
isogenous to a Jacobian in dimension 2, but not in higher dimension.

4a degree 2 totally imaginary extension of a totally real field
5If X is a scheme over some extension F ′/F then the restriction of scalars ResF ′/F X is a scheme Y over

F so that Y (M) = X(M ⊗K K′) for any K-algebra M
6An elliptic curve over Fq is supersingular when its endomorphism algebra is a quaternion algebra, which

happens exactly when #E(Fq) ≡ 1 (mod p)
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