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In this lecture we pause our discussion of the proof of the Weil conjectures to sketch the
definition of étale cohomology. More details can be found in [1, Chap. 1].

36.1 Étale maps

Étale maps play the role in algebraic geometry that local diffeomorphisms do in differential
geometry, or unbranched covers of Riemann surfaces in complex analysis, or unramified
extensions of number fields in algebraic number theory. The full definition is a little involved,
but we can give a version for nonsingular algebraic varieties without too much difficulty.

Definition 36.1. Let X and Y be nonsingular algebraic varieties over an algebraically
closed field k, and let f : X → Y be a regular map. We say that f is étale at a point x ∈ X
if the map df : Tx(X)→ Tf(x)(Y ) on tangent spaces is an isomorphism, and we say that f
is étale if it is étale at every point of X.

For example, if f : An → An if given by polynomials (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))
then we can determine whether f is étale by testing if the Jacobian matrix is nonsingular;
this is the same condition as the inverse function theorem for testing that a map of manifolds
is a local diffeomorphism.

More generally, the definition of étale is made up of two ingredients.

Flat maps

Definition 36.2. A ring homomorphism f : A → B is flat if the functor M 7→ M ⊗A B
from A-modules to B-modules is exact. Namely, if whenever

0→M → N → P → 0

is an exact sequence of A-modules, then

0→M ⊗A B → N ⊗A B → P ⊗A B → 0

is exact.
A map φ : X → Y of schemes (or varieties) is flat if the local homomorphisms OY,φ(x) →

OX,x are flat for all x ∈ X.

It turns out that the only part of exactness that can fail is the injectivity of M ⊗AB →
N ⊗A B, so flatness of A → B is equivalent to injectivity of M ⊗A B → N ⊗A B for all
injections M → N . For example, the map Z → Z/2Z is not flat since the multiplication
map [2] : Z→ Z becomes 0 after tensoring with Z/2Z.

Flat morphisms behave nicely with respect to dimensions of fibers: if f : X → Y is
flat then the fiber Xy = f−1(y) has dimension dim(X)− dim(Y ) whenever it is nonempty.
The converse is true when X and Y are nonsingular. If we further assume that X → Y is
finite, then f : X → Y is flat if and only if the inverse image f−1(y) always has the same
number of points (counting multiplicities). Open immersions X ↪→ Y are flat, but closed
immersions X ↪→ Y are only flat when they are also open (so a connected component).
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Unramified maps

Definition 36.3. Let A and B be local rings with maximal ideals mA and mB. A ring
homomorphism f : A→ B is local if f(mA) ⊆ mB. A local homomorphism is unramified if
B/f(mA)B is a finite separable field extension of A/mA or, equivalently, if

1. f(mA)B = mB and

2. the field B/mB is finite and separable over A/mA.

A map φ : X → Y of schemes (or varieties) is unramified if the local homomorphisms
OY,φ(x) → OX,x are unramified for all x ∈ X.

For example, we can localize the inclusion Z → Z[i] at different primes to see both
ramified and unramified behavior.

• The prime above (2) in Z[i] is the ideal (1 + i), and the induced map Z(2) → Z[i](1+i)

is ramified since 2Z[i] 6= (1 + i)Z[i]. Indeed, Z[i]/2Z[i] is not a field: the image of
(1 + i) is a zero divisor.

• If p ≡ 1 (mod 4) then p = (a+ bi)(a− bi) for a, b ∈ Z>0. Then (a+ bi) and (a− bi)
are distinct prime ideals in Z[i] and the induced maps Z/pZ → Z[i]/(a ± bi)Z[i] are
isomorphisms. Thus Z(p) → Z[i](a±b) is unramified.

• Finally, if p ≡ 3 (mod 4) then pZ[i] is prime and Z[i]/pZ[i] is a quadratic extension
of Z/pZ. Again, Z(p) → Z[i](p) is unramified.

Étale maps

Definition 36.4. A morphism X → Y of schemes is étale if it is flat and unramified, and
a homomorphism f : A → B is étale if the induced map Spec(B) → Spec(A) is étale.
Equivalently, it is étale if

1. B is a finitely generated A-algebra,

2. The map A→ B is flat.

3. For all maximal ideals m of B, Bm/f(p)Bm is a finite separable field extension of
Ap/pAp, where p = f−1(m).

We give some examples of étale maps, sorted based on increasing algebraic complexity
of A.

If A is a field and B/A is a finite separable extension of fields then A→ B is étale. More
generally, if B1, . . . , Bk are all finite separable extensions of A then the diagonal embedding
A→ B1 × · · · × Bk is étale. In fact, every étale k-algebra is of this form. Étale k-algebras
are a nice category to work with since they behave nicely under base change: if E is an
étale k-algebra and k′/k is any field extension then E ⊗k k′ is an étale k′-algebra of the
same degree. This property fails for field extensions: C/R is a field extension but C ×R C
is not a field extension.

If A is a Dedekind domain, let K be its field of fractions, L any finite separable extension
of K, B the integral closure of A in L, P a prime ideal of B and p = A ∩P. Then p is a
prime ideal of A and the map Ap → BP is unramified if and only if
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1. In the factorization of pB into prime ideals the ideal P occurs exactly once, and

2. the residue field extension B/P ⊃ A/p is separable.

If b ∈ B is contained in all ramified prime ideals of B then A→ B[b−1] is étale, and every
étale A-algebra is a finite product of algebras of this type.

More generally, suppose A is any ring, f(T ) ∈ A[T ] is monic and b ∈ A[T ]/(f(T )) has
the property that f ′(T ) is invertible in (A[T ]/(f(T )))[b−1]. Then A→ (A[T ]/(f(T )))[b−1] is
étale; étale maps of this form are called standard. Every étale morphism of schemes is locally
standard: if f : X → Y is étale then for each x ∈ X there are open affine neighborhoods
U 3 x and V 3 f(x) so that f(U) ⊆ (V ) and the restriction of f to U is given by a standard
étale map on the corresponding rings.

36.2 Grothendieck topologies

The notion of open covering is a fundamental one in topology, central to the definition of a
compact space for example. A Grothendieck topology is a generalization of this, where the
role of open subsets of a topological space X is replaced by an arbitrary category C.

We first need the notions of slice categories and fiber product.1 Suppose C is a category.

Definition 36.5. Given two morphisms f : X → Z and g : Y → Z in a category C, the fiber
product X×Z Y of X and Y over Z is an object equipped with morphisms p : X×Z Y → X
and q : X ×Z Y → Y with the following properties:

1. g ◦ q = f ◦ p and

2. For any other object T equipped with morphisms x : T → X and y : T → Y , there is
a unique map a : T → X ×Z Y so that x = q ◦ a and y = p ◦ a.

It’s much easier to see what’s going on using a commutative diagram. Implicit in such a
diagram is that any sequence of arrows that start and end at the same point have the same
composition.

T

X ×Z Y X

Y Z

x

y

∃!a
p

q f

g

Depending on the category and/or on the objects, fiber products may or may not exist.
But the uniqueness of the map a guarantees that, if the fiber product of X and Y over Z
does exist then it is unique up to unique isomorphism (at least, up to isomorphism that
commutes with the maps to X and Y ). In many categories that have a faithful forgetful
functor to sets (such as abelian groups, commutative rings, R-modules), any two objects
have a fiber product: {(x, y) ∈ X × Y : f(x) = g(y)}.

We can also interpret the fiber product as just a normal product in a different category.

1A fiber products is also called a pullback or a Cartesian square; the dual notion is referred to as a
pushout
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Definition 36.6. If X is an object of C then the slice category C/X is the category whose
objects are morphisms Y → X in C. Given two objects y : Y → X and z : Z → X, the
morphisms between them are morphisms f : Y → Z in C such that y = z ◦ f . We write
HomX(Y,Z) for the set of such morphisms.

For example, the category of schemes over a field k is just the slice category of the
category of all schemes over the object Spec(k). We can now define a Grothendieck topology.

Definition 36.7. Let C be a category. A Grothendieck topology on C is a collection of
distinguished families of maps that we call coverings: for each object U of C we give a set
of families of maps (Ui → U)i∈I satisfying the following properties.

1. For any covering (Ui → U)i∈I and any morphism V → U , the fiber products Ui×U V
exist, and (Ui ×U V → V )i∈I is a covering of V .

2. If (Ui → U)i∈I is a covering of U , and if for each i ∈ I (Vij → Ui)j∈Ji is a covering of
Ui, then the family (Vi,j → U)i,j is a covering of U .

3. For any U in C, the family (U
id−→ U) consisting of a single map is a covering of U .

A category equipped with a Grothendieck topology is known as a site.

For example, if X is a topological space then we can consider the category of all open
subsets of X, with morphisms given by inclusions. In this case, we say that a family
(Ui ⊆ U)i∈I cover U if their union is all of U inside X. The other example that will
play a central role for us will be the site Xét whose category whose objects consist of étale
morphisms U → X for some fixed scheme X (with morphisms as in the slice category),
and where the coverings are families of étale morphisms (ϕi : Ui → U)i∈I that are jointly
surjective in the sense that U =

⋃
i∈I ϕi(Ui).

Definition 36.8. A presheaf of sets on a site is a contravariant functor C → Sets. That is,
to each object we associate a set F(U) and to each morphism Y → Z we associate a map
of sets F(Z) → F(Y ), which we will sometimes write a → a

∣∣
Y

because of our motivating
example of open subsets of a topological space. Note that the definition of a presheaf only
depends on the category, not the coverings.

Similarly, a presheaf of groups, abelian groups or rings is a contravariant functor C →
Grps, C → Ab or C → Rings.

A sheaf on a site is a presheaf F so that

F(U)→
∏
i∈I
F(Ui) ⇒

∏
i,j∈I×I

F(Ui ×U Uj)

is exact for every covering (Ui → U)i∈I . That is, F is a sheaf if the map F(U)→
∏
i∈I F(Ui)

identifies F(U) with the subset of the product consisting of families (αi) so that

αi
∣∣
Ui×UUj

= αj
∣∣
Ui×UUj

for all i, j ∈ I.

The notation F(X) suggests that F is fixed and X is varying. We will frequently instead
be fixing X and varying F , so we define another notation for the same thing:

Γ(X,F) := F(X).

Here are some examples of sheaves on Xét.
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1. The structure sheaf OU , which associates to each U → X the ring of regular functions
Γ(U,OU ) = OU (U).

2. For any fixed scheme Z, the presheaf defined by FZ(U) = HomX(U,Z) is a sheaf.
Moreover, if Z has a group structure then FZ is a sheaf of groups. For example,
if Z = µn is the variety defined by the single equation Tn − 1 = 0 then µn(U) is
the group of nth roots of unity in Γ(U,OU ). If Z = Ga is the affine line regarded
as a group under addition then Ga(U) = Γ(U,OU ) regarded as an abelian group. If
Z = Gm is the affine line missing the origin, regarded as a group under multiplication,
then Gm(U) = Γ(U,OU )×.

3. If X is a variety and Λ is any set we can define FΛ(U) = Λπ0(U), the product of copies
of Λ indexed by the connected components of U . With the obvious restriction maps
this is a sheaf, called the constant sheaf defined by Λ.

36.3 Derived functors

Étale cohomology is one instance of a more general framework known as right and left
derived functors. This will allow us to associate, to any left-exact or right-exact functor
F : A→ B between two abelian categories a sequence of functors, of which F is the 0th. We
will now define abelian categories, exact functors and derived functors, and give multiple
examples (including étale cohomology).

Abelian categories

The notion of abelian category is modeled on the category of abelian groups, and is essen-
tially a category where you can add morphisms (the set of homomorphisms between any
two objects is an abelian group) and compute kernels and cokernels of maps. Here is a
definition (there are multiple equivalent ways to define it), but I encourage you to focus on
the examples at first.

Definition 36.9. A preadditive category is one where every homset is an abelian group,
and composition is bilinear: γ(α+ β) = γα+ γβ and (α+ β)γ = αγ + αβ. We write 0 for
the zero morphism, with the domain and codomain to be understood from context.

An additive category is a preadditive category with finite products (as in our definition
of fiber product, but without Z) and coproducts (the dual notion).

A zero object in a category is an object 0 that is both initial and terminal: for every
object X in the category there is a unique morphism 0→ X and a unique morphism X → 0.

The kernel of a morphism f : X → Y is a morphism k : K → X so that f ◦ k = 0 and
with the following universal property:

T

K X

Y

k′

0

∃!u
k

0
f

A monomorphism is the categorical version of an injection: a morphism f : X → Y
with the property that f ◦ g1 = f ◦ g2 implies g1 = g2 for any morphisms g1, g2 : T → X.
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The cokernel of a morphism f : X → Y is a morphism q : Y → Q so that q ◦ f = 0 and
with the following universal property:

T

Q Y

X

q′

0

∃!u
q

0
f

An epimorphism is the categorical version of a surjection: a morphism f : X → Y with
the property that g1 ◦ f = g2 ◦ f implies g1 = g2 for any morphisms g1, g2 : Y → T .

An epi-mono factorization of a morphism f : X → Y is a decomposition of f as

X
s−→ Z

i−→ Y , with s an epimorphism and i a monomorphism.
An abelian category is an additive category that has a zero object, where every morphism

has a kernel and cokernel, where every monomorphism is the kernel of some morphism and
every epimorphism is the cokernel of some morphism, and where ever morphism has an
epi-mono factorization.

The examples to keep in mind: abelian groups, k-vector spaces, R-modules over a
commutative ring R, finitely generated modules over a Noetherian ring R. Most relevantly
for us, the category of sheaves of abelian groups on a site is an abelian category, as is the
category of presheaves on a site with values in any abelian category.2

Injective and projective objects

The key feature of an abelian category that allows one to apply the machinery of derived
functors is that is has enough injective or projective objects. Here is the definition and
some examples.

Definition 36.10. An object Q is injective if, for every monomorphism f : X → Y and
any morphism g : X → Q, there is an extension h of g to Y :

X Y

Q

f

g ∃h

An object P is projective if, for every epimorphism f : X → Y and any morphism
g : P → Y , there is a lift of g to X.

Y X

P

f
g ∃h

2Technically you need an additional assumption that the site is small

6



Note that, unlike most of the universal properties that we have seen so far, the morphism
h is usually not unique.

The statement that all sets are projective is equivalent to the axiom of choice. In
the category of abelian groups injective objects are divisible groups3 (multiplication by
any nonzero integer is surjective) and projective objects are free abelian groups (Zr for
example). For vector spaces, every object is both injective and projective. An R-module P
is projective if there another R-module Q so that P ⊕Q is free.

We will be particularly interested in finding a monomorphism from an arbitrary object
X in our abelian category to an injective object (or, dually, finding an epimorphism from
a projective object to X). If this is always possible then we say that the abelian category
has enough injectives (or enough projectives). Most of our example abelian categories have
enough injectives4 and enough projectives,5 but finitely generated R-modules do not have
enough injectives (nonzero divisible groups are not finitely generated).

When you have enough injectives you can form an injective resolution of any object in
your category. This is an exact sequence

0→ X → I0 → I1 → · · ·

where each Ii is injective. A projective resolution is an exact sequence

· · · → P1 → P0 → X → 0

where each Pi is projective. Injective and projective resolutions are not unique, but the
choice of resolution will not end up mattering for our purposes.

Exact functors

Abelian categories allow us to consider exact sequences, since we have kernels and cokernels.
The extent to which functors between abelian categories preserve exactness is an important
attribute when working with them.

Definition 36.11. A covariant additive6 functor F : A → B between abelian categories is
left exact if, for all exact sequences

0→ A→ B → C

in A, the sequence
0→ F (A)→ F (B)→ F (C)

is exact. It is right exact if, for all exact sequences

A→ B → C → 0

in A, the sequence
F (A)→ F (B)→ F (C)→ 0

is exact. A contravariant additive functor G is left exact if A→ B → C → 0 exact implies
0→ G(C)→ G(B)→ G(A) is exact; right exactness is defined similarly. We say a functor
is exact if it is both left and right exact.

3one implication requires the axiom of choice
4For R-modules the injective object is called the injective hull, and for sheaves it is called the Godement

resolution
5assuming the axiom of choice
6a functor is additive if it acts as a group homomorphism on homsets
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Here are some important examples that will form the starting point for various derived
functors.

1. If C is an abelian category and A an object of C, the functor C → Ab defined by
X 7→ Hom(A,X) is left exact, and is right exact if and only if A is projective. The
functor defined by X → Hom(X,A) is a contravariant left exact functor, and is right
exact if and only if A is injective.

2. If A is a commutative ring and B an A-algebra then the functor A−mod → B−mod
defined by X 7→ X ⊗A B is right exact, and is left exact if B is flat.

3. If G is a group and R a commutative ring, the category of G-modules7 is an abelian
category and the “invariants” functor R[G]−mod→ R−mod defined by M 7→ MG is
left exact. Here MG = {x ∈M : gx = x for all g ∈ G}.

4. The functor from sheaves of abelian groups on Xét to Ab defined by F 7→ F(X) is left
exact. This is called the global sections functor.

36.3.1 Derived functors and cohomology

Suppose now that we have a covariant left exact functor F : A → B between two abelian
categories, and that A has enough injectives. If A is an object of A then we can find an
injective resolution

0→ A→ I0 → I1 → I2 → · · ·

Applying F to this resolution yields a sequence

0→ F (A)→ F (I0)
ϕ0−→ F (I1)

ϕ1−→ F (I2)
ϕ2−→ · · ·

While this sequence will usually not be exact, it will have the property that the composition
of any two maps is zero (since left exact functors are additive). We define the right derived
functors RiF by setting

RiF (A) =

{
ker(ϕ0) if i = 0

ker(ϕi)/ im(ϕi−1) otherwise

Note that, since F is left exact, R0F = F . Of course, there’s a lot to check: this doesn’t
depend on the choice of injective resolutions, that the results are functors.... The most
important property of left derived functors is the following:

Theorem 36.12. If F : A→ B is a left exact functor8 and

0→ A→ B → C → 0

is an exact sequence in A then

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ R2F (A)→ R2F (B)→ · · ·
7left R-modules with an action of G by R-linear maps; if G is a topological group you can upgrade this

by requiring that the action be continuous
8and A has enough injectives so that the RiF are defined
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There is a dual notion: if F : A→ B is a right exact functor and A has enough projectives
then you can take a projective resolution to defined left derived functors LiF with so that
an analogue of theorem 36.12 holds: for any short exact sequence you get a long exact
sequence

· · · → L2F (B)→ L2F (C)→ L1F (A)→ L1F (B)→ L1F (C)→ F (A)→ F (B)→ F (C)→ 0.

One can also perform a similar process with contravariant functors.
Right derived functors measure the failure of the functor to also be left exact, and left

derived functors measure the failure of the functor to also be right exact.
This notion appears in many guises.

1. The right derived functors9 of Hom(A,—) are denoted Exti(A,—). The name comes
from the fact that Ext1(M,N) classifies extensions, that is objects E that fit into a
sequence

0→ N → E →M → 0

up to equivalence.

2. The right derived functors of the fixed-point functor10 for G-modules is group coho-
mology. In particular, if G is a Galois group then this specializes to Galois cohomol-
ogy, which plays a central role in arithmetic geometry since it helps determine how
isomorphism classes of objects over the algebraic closure of a field k break up into
isomorphism classes over k itself.

3. If R is a commutative ring and A is an R-module then B 7→ A⊗R B is a right exact
functor from R−mod to Ab. Its left derived functors are denoted TorRi (A,B).

4. And finally, if Xét is the étale site and Γ(X,—) is the left exact functor of global
sections then the étale cohomology groups are defined as

H i
ét(X,F) = RiΓ(X,F).

36.4 A Weil cohomology theory

Of course, we’re not quite there. To get a Weil cohomology theory we needed a vector space
over a field of characteristic 0. And what is F?

There’s one more small step. In what is sometimes referred to `-adic cohomology we
define

H i
ét(X,Z`) = lim

←m
H i
ét(X,Z/`mZ),

H i
ét(X,Q`) = H i

ét(X,Z`)⊗Z`
Q`.

Here Z/`mZ is the constant sheaf associated to Z/`mZ. Note that taking the projective
limit does not commute with taking cohomology, so we cannot just take coefficients to be
the constant sheaf Z` (in fact, cohomology with this coefficient sheaf is usually 0). And now
the real work begins: proving that this definition satisfies the axioms of a Weil cohomology
theory.

9You can also construct them as the left derived functors of the contravariant Hom functor on the other
coordinate

10this is actually a special case of the previous example, since MG = HomR[G](R,M) where G acts trivially
on R
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