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Lecture #35 12/2/2020

These notes on the Weil conjectures are a blend of the exposition in Poonen [3, Chap.
7], Milne [1, Chap. II] and Mustaţă [2]. In this lecture we sketch the proof of the first two
parts of the Weil conjectures for projective varieties of arbitrary dimension. The proof uses
étale cohomology; proving that it has the properties we require is beyond the scope of the
course. Hopefully seeing how it can be applied will help motivate the use of cohomology in
arithmetic geometry more generally.

We rephrase part of the Weil conjecture in a form amenable to applying cohomology.

Theorem 34.9. Suppose that X is a smooth, geometrically irreducible, projective variety
of dimension n defined over Fq.

1. (Rationality) There is a decomposition

ZX(T ) =
P1(T ) . . . P2n−1(T )

P0(T ) . . . P2n(T )
,

where each Pi(T ) ∈ Z[T ] can be factored over C as

Pi(T ) =

bi∏
j=1

(1− αi,jT ).

2. (Functional equation) There is an integer χ so that

ZX

(
1

qnT

)
= ±qnχ/2TχZX(T ).

35.1 Weil cohomology theories

The core idea of the proof is that we can study rational points as fixed points of a Frobenius
map:

X(Fq) = X(F̄q)F .

The easiest way to describe the map F : X → X is to embed X ↪→ Pn into projective space
and define F on Pn by (a0 : a1 : · · · : an) 7→ (aq0 : aq1 : · · · : aqn). Since the defining equations
of X inside Pn have coefficients in Fq, F induces a map X → X.

In order to study F , we use a cohomology ring H∗(X). This is will be a graded vector
space: for each non-negative integer i there is a cohomology space H i(X), and there is a
cup product ∪ : H i(X)×Hj(X)→ H i+j(X). While cohomology has many properties that
will be important to us, the fundamental one is that it is functorial : if X and Y are varieties
and f : X → Y is a morphism then there is a morphism f∗ : H∗(Y )→ H∗(X). Moreover,
id∗ = id and (f ◦ g)∗ = g∗ ◦ f∗. We will study X(Fq) by studying F ∗ : H∗(X)→ H∗(X).

In order to prove the Weil conjectures, we will need much more than functoriality. We
encode the desired properties of H∗(X) into the following set of axioms.

Definition 35.1. Fix an algebraically closed field k (which will be F̄q for us) and a charac-
teristic 0 field K. Below, X and Y will refer to nonsingular, connected, projective varieties.
A Weil cohomology theory [2, §4.1] is given by the following data:
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(D1) A contravariant functor X → H∗(X) =
∑

iH
i(X) from nonsingular, connected, pro-

jective varieties over k to graded commutative K-algebras. Graded commutative
means that if α ∈ H i(X) and β ∈ Hj(X) then α ∪ β = (−1)ijβ ∪ α.

(D2) For every X, a linear trace map Tr = TrX : H2 dim(X)(X)→ K.

(D3) For every X and for every closed irreducible subvariety Z ⊆ X of codimension c, a
cohomology class cl(Z) ∈ H2c(X).

We require that the following axioms be satisfied:

(A1) For every X, all H i(X) have finite dimension over K. Moreover, H i(X) = 0 unless
0 ≤ i ≤ 2 dim(X).

(A2) (Künneth property) For every X,Y , if pX : X ×Y → X and pY : X ×Y → Y are the
canonical projections, then

H∗(X)⊗K H∗(Y )→ H∗(X × Y ), α⊗ β 7→ p∗X(α) ∪ p∗Y (β)

is an isomorphism.

(A3) (Poincaré duality) For every X, the trace map Tr : H2 dim(X)(X) → K is an isomor-
phism, and for 0 ≤ i ≤ 2 dim(X), the bilinear map

H i(X)⊗K H2 dim(X)−i(X)→ K,α⊗ β 7→ TrX(α ∪ β)

is a perfect pairing (i.e. it induces an isomorphismH2 dim(X)−i(X) ∼= Hom(H i(X),K)).

(A4) (Trace maps and products) For every X and Y , if α ∈ H2 dim(X)(X) and β ∈
H2 dim(Y )(Y ), we have

TrX×Y (p∗X(α) ∪ p∗Y (β)) = TrX(α) TrY (β).

(A5) (Exterior product of cohomology classes) For every X and Y and closed irreducible
Z ⊆ X and W ⊆ Y , we have

cl(Z ×W ) = p∗X(cl(Z)) ∪ p∗Y (cl(W )).

(A6) (Pushforward of cohomology classes) For every morphism f : X → Y , every irre-
ducible closed Z ⊆ X and every α ∈ H2 dim(Z)(Y ) we have

TrX(cl(Z) ∪ f∗(α)) = deg(Z/f(Z)) · TrY (cl(f(Z)) ∪ α).

(A7) (Pullback of cohomology classes)1 Let f : X → Y be a morphism and Z ⊆ Y irre-
ducible and closed, satisfying the following conditions:

a) All irreducible components W1, . . . ,Wr of f−1(Z) have dimension dim(Z) +
dim(X)− dim(Y ).

b) Either f is flat in a neighborhood of Z, or Z is generically transverse to f in the
sense that f−1(Z) is generically smooth.

1We haven’t defined all of the terms used in this axiom (such as flatness or the multiplicity of a component
of f−1(Z)). It is included for completeness, and we won’t be using it directly.
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Under these assumptions, if [f−1(Z)] =
∑r

i=1miWi, then f∗(cl(Z)) =
∑r

i=1mi cl(Wi).
2

(A8) (Case of a point) If x = Spec(k) then cl(x) = 1 and Trx(1) = 1.

There are a number of known Weil cohomology theories: singular cohomology if k = C
and étale and rigid cohomology if k = F̄q. When X is defined over a perfect field k that is
not algebraically closed (such as Fq), we will write H i(X) for the cohomology of the base
change of X to k̄.

In order to count points that are fixed by Frobenius we will be looking at the intersection
of its graph with the diagonal inside X ×X. We need some basic results from intersection
theory (which will also help clarify the comment about χ being in the self intersection of
the diagonal in X ×X).

Let Z and W be two closed irreducible subvarieties of X (or later, of X×X). Recall that
codim(Z) = dim(X)−dim(Z). We say that Z and W intersect properly if codim(Z ∩W ) =
codim(Z) + codim(W ). We say that Z and Z ′ are rationally equivalent3 if there is a
subvariety V ⊆ X × P1 so that

1. The projection V → P1 is dominant. This implies that V intersects properly with
X × {0} and with X × {∞}.

2. Z = V ∩ (X × {0})

3. Z ′ = V ∩ (X × {∞}).

The benefit of considering rational equivalence is that we may use it to move one of Z or
W if they don’t intersect properly.

Lemma 35.2 (Chow’s Moving Lemma). For any irreducible Z and W closed irreducible
subvarieties of X, there is4 a Z ′ that is rationally equivalent to Z that intersects properly
with W ; moreover, the intersection Z ′ ∩W is well defined up to rational equivalence.

We may thus define the intersection product (Z ·W ) to be the rational equivalence class
of Z ′∩W . When dim(Z)+dim(W ) = dim(X), the intersection Z ′∩W will have dimension
0 and we will also write (Z ·W ) ∈ Z for the degree of (Z ·W ). Note that it is possible for
(Z ·W ) to be negative, since the moving lemma sometimes produces a linear combination
of subvarieties with negative coefficients.

We can now state the trace formula, which provides a way of computing intersection
numbers in terms of cohomology:

Theorem 35.3 (Trace formula). If φ : X → X is an endomorphism and if Γφ,∆ ⊂ X ×X
are the graphs of φ and of the identity, then

(Γφ·) =

2 dim(X)∑
i=0

(−1)i Tr(φ∗ | H i(X)).

In particular, if Γφ and ∆ intersect transversely (all the points have multiplicity 1) then the
right hand side computes #{x ∈ X : φ(x) = x}.

2if Z is generically transverse to f then mi = 1 for all i
3the actual definition is a bit more involved; see [5] for details
4One actually needs to work with cycles rather than just subvarieties: cycles are formal linear combina-

tions of subvarieites
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Corollary 35.4. If ∆ ⊂ X ×X is the diagonal, then

(∆ ·∆) =
2n∑
i=0

(−1)i dimK H
i(X).

For a proof of Theorem 35.3 using the axioms of a Weil cohomology theorem see [2, §4.1].

35.2 Rationality of the Hasse-Weil zeta function

We can now prove the rationality of the zeta function. We start with two lemmas.

Lemma 35.5. If φ is an endomorphim of a finite dimensional K-vector space then

det(id−Tφ) = exp

−∑
m≥1

Tr(φm | V )
Tm

m

 .

Proof. We may assume that K is algebraically closed (otherwise we can base change ev-
erything to the algebraic closure). Choose a basis of V so that φ is given by an up-
per triangular matrix with diagonal entries a1, . . . , ad. Clearly we have det(id−Tφ) =
(1− a1T ) . . . (1− adT ). We also have

exp

−∑
m≥1

Tr(φm | V )
Tm

m

 = exp

−∑
m≥1

d∑
i=1

ami T
m

m


= exp

(
d∑
i=1

log(1− aiT )

)
=

d∏
i=1

(1− aiT ).

Lemma 35.6. Let L be a field and f =
∑

m≥0 amT
m ∈ L[[T ]]. Then f ∈ L(T ) if and only

if there exist M,N ∈ Z≥0 so that the linear span of the vectors

{(ai, ai+1, . . . , ai+N ) ∈ L⊕(N+1)|i ≥M}

is a proper subspace of L⊕(N+1). As a consequence, if L′/L is a field extension then f ∈
L′(T ) if and only if f ∈ L(T ).

Proof. We have f ∈ L(T ) if and only if there are M,N ∈ Z≥0 and c0, . . . , cN ∈ L not all zero
such that f(T ) ·

∑N
i=0 ciT

i is a polynomial of degree less than M +N . This occurs precisely

when
∑N

j=0 cN−jai+j = 0 for all i ≥ M , a condition that gives a nonzero linear function
vanishing on the linear span of the vectors in the statement. The assertion that f ∈ L′(T )
if and only if f ∈ L(T ) follows from the fact that a set of vectors v1, . . . , vr is linearly
independent in an L-vector space V if only if v1⊗1, . . . , vr⊗1 are linearly independent over
L′ in V ⊗L L′.

Theorem 35.7. If X is a nonsingular, geometrically irreducible, n-dimensional projective
variety over Fq, set Pi(T ) = det(id−TF ∗|H i(X)) for 0 ≤ i ≤ 2n. Then

ZX(T ) =
P1(T ) . . . P2n−1(T )

P0(T ) . . . P2n(T )
.

In particular, ZX(T ) ∈ Q(T ).
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Proof. Write X̄ for the base change of X to F̄q. We have that Nm = #{x ∈ X(F̄q) :
Fm(x) = x}. Moreover, the graph Γm ⊂ X̄ × X̄ of Fm is transverse to the diagonal.5 So
by the trace formula we have

Nm =
2n∑
i=0

(−1)i Tr((Fm)∗|H i(X̄)).

Applying Lemma 35.5 we get that ZX(T ) =
∏2n
i=0 Pi(T )(−1)i+1

and thus ZX(T ) ∈ K(T ).
But since ZX(T ) is a power series with rational coefficients, by Lemma 35.6 ZX(T ) ∈
Q(T ).

35.3 The functional equation for the Hasse-Weil zeta function

We start with a lemma from linear algebra

Lemma 35.8. Let φ : V ×W → K be a perfect pairing of r-dimensional K-vector spaces.
If λ ∈ K×, f ∈ EndK(V ) and g ∈ EndK(W ) satisfy φ(f(v), g(w)) = λφ(v, w) for all v ∈ V
and w ∈W then

det(id−Tg|W ) =
(−1)rλrT r

det(f |V )
det(id−λ−1T−1f |V )

and

det(g|W ) =
λr

det(f |V )
.

Proof. We may assume that K is algebraically closed and that e1, . . . , er is a basis of V so
that f has an upper triangular matrix. Let e′1, . . . , e

′
r be the basis of W so that φ(ei, e

′
j) =

δi,j .
Note that g is invertible: if g(w) = 0 then 0 = φ(f(v), g(w)) = λφ(v, w) for all v ∈ V

so w = 0 since φ is a perfect pairing. Since f is upper triangular, for j < i we have
φ(f(ei), e

′
j) = 0 and thus φ(ei, g

−1(e′j)) = 0. We get that the matrix for g−1 is lower
triangular with respect to the basis {e′j}. We can also relate the diagonals of the matrices

(ai,j)i,j for f and (bi,j)i,j for g−1 since

ai,i = φ(f(ei), e
′
i) = λφ(ei, g

−1(e′i)) = λbi,i.

Writing det(f |V ) =
∏r
i=1 ai,i and det(g|W ) =

∏r
i=1 b

−1
i,i = λr/

∏r
i=1 ai,i we get the second

statement.
We also have

det(id−Tg|W ) = det(g|W ) det(g−1 − T id |W )

=
λr

det(f |V )
·
r∏
j=1

(aj,jλ
−1 − T )

=
(−1)rλrT r

det(f |V )
·
r∏
j=1

(1− aj,jλ−1T−1)

=
(−1)rλrT r

det(f |V )
det(id−λ−1T−1f |V ).

5See [2, Prop 2.4].
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We also need some facts about the degree of the Frobenius morphism and how F ∗ acts
on the top-dimensional cohomology space.

Lemma 35.9. If f : X → Y is a generically finite, surjective morphism of degree d between
smooth, connected projective varieties then TrX(f∗(α)) = d·TrY (α) for all α ∈ H2 dim(Y )(Y ).
In particular, if X = Y then f∗ acts as multiplication by d on H2 dim(X)(X).

Proof. This is [2, Prop 4.1.iv].

Lemma 35.10. If X is a smooth variety of dimension n over Fq then the degree of Frobenius
is qn.

Proof. This is [4, Lemma 33.35.10].

Theorem 35.11. If X is a nonsingular, geometrically irreducible, n-dimensional projective
variety over Fq, and E = (∆ ·∆) then

ZX(
1

qnT
) = ±qnE/2TEZX(T ).

Proof. As in the proof of Theorem 35.7, we write X̄ for the base change of X to F̄q. We
apply Lemma 35.8 to the perfect pairing

φi : H i(X̄)⊗H2n−i(X̄)→ H2n(X̄)→ K, φi(α⊗ β) = Tr(α ∪ β)

given by Poincaré duality. By Lemmas 35.9 and 35.10, F ∗ acts as multiplication by qn on
H2n(X̄). Thus

φi(F
∗(α), F ∗(β)) = TrX̄(F ∗(α ∪ β)) = TrX̄(qnα ∪ β) = qnφi(α, β)

for all α ∈ H i(X̄) and β ∈ H2n−i(X̄). Now Lemma 35.8 implies that if we set bi =
dimK H

i(X̄) and Pi(T ) = det(id−TF ∗|H i(X̄)) then

det(F ∗|H2n−i(X̄)) =
qnbi

det(F ∗|H i(X̄))
(35.1)

P2n−i(T ) =
(−1)biqnbiT bi

det(F ∗|H i(X̄))
Pi

(
1

qnT

)
. (35.2)

Using Theorem 35.7 and the fact that E =
∑2n

i=0(−1)ibi by Corollary 35.4, we get

ZX

(
1

qnT

)
=

2n∏
i=0

Pi

(
1

qnT

)(−1)i+1

=
2n∏
i=0

P2n−i(T )(−1)i+1 · (−1)EqnETE∏2n
i=0 det(F ∗|H i(X̄))(−1)i

= ±ZX(T ) · q
nETE

qnE/2
= ±qnE/2TEZX(T ).

Note that the sign in the functional equation is (−1)E+a, where a = 0 if det(F ∗|Hn(X̄)) =
qnbn/2 and a = 1 if det(F ∗|Hn(X̄)) = −qnbn/2. If we write Pn(T ) =

∏bn
j=1(1−αn,jT ), (35.2)

for i = n implies that the multiset {αn,1, . . . , αn,bn} is invariant under α 7→ qbn/α, and∏bn
j=1 αn,j = (−1)aqnbn/2. Thus a has the same parity as the number of αn,j equal to −qn/2.
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