These notes on the Weil conjectures are a blend of the exposition in Poonen [5, Chap. 7], Milne [3, Chap. II] and Mustață [4].

34.1 Riemann and Dedekind zeta functions

Our main object of interest will be the Hasse-Weil zeta function associated to a variety over a finite field, but we begin with a brief discussion of the Riemann zeta function for comparison and motivation.

For a complex number s with $\operatorname{Re}(s) > 1$, we define

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
(1)

Though there are interesting features to investigate in the right "half" of the plane (for example, $\zeta_{2m}/\pi^{2m} \in \mathbb{Q}$ for $m \in \mathbb{Z}$), the main interest in the zeta function lies in its extension to the critical strip $\{z \in \mathbb{C} : 0 \leq \operatorname{Re}(z) \leq 1\}$. This extension relies on a theorem in complex analysis: if $U \subset V$ are nonempty connected open subsets of \mathbb{C} and f(z) and g(z) are holomorphic functions on V that agree on U then f(z) = g(z) for all $z \in V$.¹ We may thus speak of the analytic continuation of a holomorphic function to a larger open subset of \mathbb{C} (or the meromorphic continuation if we allow poles); such a continuation is unique by the argument above, but may or may not exist for a given subset. The function defined by (1) in fact has a meromorphic continuation to the whole complex plane, with one simple pole at s = 1. The resulting function is known as the Riemann zeta function.

The proof of analytic continuation² is closely connected to the functional equation for $\zeta(s)$. Recall that the Γ function is a complex meromorphic function function extending the factorial function; it is defined for $\operatorname{Re}(s) > 0$ by the integral equation

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx.$$

Meromorphic continuation to \mathbb{C} is much easier for Γ than for ζ since Γ satisfies³ $\Gamma(s+1) = s\Gamma(s)$ using integration by parts:

$$\Gamma(s+1) = \int_0^\infty x^s e^{-x} dx = \left[-x^s e^{-x} \right]_0^\infty + \int_0^\infty s x^{s-1} e^{-x} dx = s \Gamma(s).$$

We can use the functional equation to iteratively extend Γ into the half planes $\{s \in \mathbb{C} : \operatorname{Re}(s) > -m\}$ for $m = 1, 2, \ldots$ using $\Gamma(s) = 1/s\Gamma(s+1)$. This process yields no zeros, and simple poles at non-positive integers. The functional equation also confirms that Γ extends the factorial function: we have $\Gamma(n) = (n-1)!$ for $n \in \mathbb{Z}_{>0}$.

¹This follows from the fact that Taylor series for holomorphic functions converge in a disc and thus a nonzero holomorphic function cannot vanish completely on a disc. Note the contrast with real C^{∞} functions: $f(x) = e^{-1/x^2}$ for x > 0 and f(x) = 0 for $x \le 0$ is C^{∞} . ²The proof would take us too far afield into analytic number theory, but is readily available, e.g. [1, Ch.

²The proof would take us too far afield into analytic number theory, but is readily available, e.g. [1, Ch. 5 §4.2-4.4] or [2]

³This functional equation is enough to characterize the Γ function if one additionally requires $\log(\Gamma(s))$ is convex on the positive real axis

Now define an auxiliary function⁴ $\xi(s)$ by

$$\xi(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s).$$

One proves that the function $s(s-1)\xi(s)$ is analytic on all of \mathbb{C} and gives the functional equation for $\zeta(s)$:

$$\xi(s) = \xi(1-s).$$
 (2)

The main connection of $\zeta(s)$ to number theory comes from its expression as an Euler product.

Proposition 34.1. If $\operatorname{Re}(s) > 1$ then

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}.$$

Proof. We have

$$\prod_{p} \frac{1}{1 - p^{-s}} = \prod_{p} \sum_{m=0}^{\infty} (p^{m})^{-s}$$
$$= \sum_{n=1}^{\infty} n^{-s}$$

using unique factorization and the fact that $\sum_{m=0}^{\infty} p^{-ms}$ is absolutely convergent when $\operatorname{Re}(s) > 0$.

The Euler product allows us to get an initial handle on where the zeros of $\zeta(s)$ lie.

Proposition 34.2. If $\zeta(s) = 0$ then either $s/2 \in \mathbb{Z}_{\leq 0}$ or $0 \leq \operatorname{Re}(s) \leq 1$.

Proof. We first show that $\zeta(s)$ has no zeros with $\operatorname{Re}(s) > 1$. By Prop. 34.1,

$$\begin{aligned} \zeta(s) &= \prod_{p} \frac{1}{1 - p^{-s}} \\ &= \prod_{p} \left(1 + \frac{1}{p^{s} - 1} \right) \end{aligned}$$

Since $\sum_{p} \frac{1}{p^s-1}$ converges absolutely, this product converges and is thus nonzero.

The result now follows from the functional equation (2) together with the fact that Γ only has poles at non-positive integers.

Why do we care about the zeros of $\zeta(s)$? The first spectacular application was to proving the following theorem on the distribution of prime numbers. Let $\pi(x)$ be the number of primes less than or equal to x.

Theorem 34.3 (Prime number theorem). The probability that a random integer with k base-e digits is prime is asymptotic to 1/k. More precisely, $\pi(x) \sim x/\log(x)$.

⁴Sometimes $\xi(s)$ is scaled by s(s-1) in order to cancel the poles and make it entire

Proof. Let $\vartheta(x) = \sum_{p \leq x} \log(p)$. The proof has the following structure. First, show that there are no zeros of $\zeta(s)$ with $\operatorname{Re}(s) = 1$. Second, use this zero-free line together with analytic results to show that $\vartheta(x) \sim x$. Finally, note that

$$\begin{split} \vartheta(x) &= \sum_{p \leq x} \log(p) \leq \sum_{p \leq x} \log(x) = \pi(x) \log(x) \\ \vartheta(x) &\geq \sum_{x^{1-\epsilon} \leq p \leq x} \log(p) \geq (1-\epsilon) \sum_{x^{1-\epsilon} \leq p \leq x} \log(x) \\ &= (1-\epsilon) \log(x) (\pi(x) + O(x^{1-\epsilon})). \end{split}$$

For more details, see Zagier's short article [6].

So the nontrivial zeros of $\zeta(s)$ are known to lie in the open critical strip with 0 < Re(s) < 1, but more is believed to be true:

Conjecture 34.4 (Riemann hypothesis). All nontrivial zeros of $\zeta(s)$ have $\operatorname{Re}(s) = 1/2$.

The conjecture is known to hold for the first 10 trillion zeros and for at least 41% of all nontrivial zeros. A proof is worth one million dollars from the Clay Math Institute, and it is one of the most common assumptions for conditional results in the mathematical literature.⁵

The broad class of generalizations of $\zeta(s)$ are known as *L*-functions, but we will focus on the subset of zeta functions among them. Suppose K is a number field. The *Dedekind* zeta function of K is the meromorphic continuation of

$$\zeta_K(s) = \sum_{I \subseteq \mathcal{O}_K} \frac{1}{\operatorname{Nm}_{K/\mathbb{Q}}(I)^s} = \prod_{P \text{ prime ideal}} \frac{1}{1 - \operatorname{Nm}_{K/\mathbb{Q}}(P)^{-s}}.$$
(3)

34.2 Hasse-Weil zeta functions

Suppose now that X is a variety over a finite field $k = \mathbb{F}_q$. Since \mathbb{F}_q is finite, we may count the number of points, not just over \mathbb{F}_q but also for any extension $\mathbb{F}_{q^m}/\mathbb{F}_q$. Let $N_m = \#X(\mathbb{F}_{q^m})$, and let X_{cl} . We then define the Hasse-Weil zeta function of X to be the power series

$$Z_X(T) = \exp\left(\sum_{m=1}^{\infty} \frac{N_m}{m} T^m\right) \in \mathbb{Q}[[T]].$$

The use of the term "zeta function" is justified by the following proposition.

Proposition 34.5. For any variety X over \mathbb{F}_q ,

$$Z_X(T) = \prod_{x \in X_{\rm cl}} \frac{1}{1 - T^{\deg(x)}}.$$

⁵See https://mathoverflow.net/questions/17209/consequences-of-the-riemann-hypothesis for a list of major consequences of the Riemann hypothesis and the generalized Riemann hypothesis, which also considers zeros of Dirichlet L-functions

Proof. For $r \ge 1$, let $a_r = \#\{x \in X_{cl} : [k(x) : k] = r\}$. Note that $N_m = \sum_{r|m} r \cdot a_r$. We have

$$\log(Z_X(T)) = \sum_{m \ge 1} \frac{N_m}{m} T^m = \sum_{m \ge 1} \sum_{r|m} \frac{r \cdot a_r}{m} T^m = \sum_{r \ge 1} a_r \sum_{\ell \ge 1} \frac{T^{\ell r}}{\ell}$$
$$= \sum_{r \ge 1} (-a_r) \log(1 - T^r) = \sum_{r \ge 1} \log(1 - T^r)^{-a_r} = \log\left(\prod_{r \ge 1} (1 - T^r)^{-a_r}\right).$$

Applying log to both sides we get the result.

If we substitute $T = q^{-s}$ we get a function that looks very similar to the Dedekind zeta function in (3). Also note that Prop. 34.5 implies that $Z_X(T) \in \mathbb{Z}[[T]]$.

Example 34.6. Let $X = \mathbb{A}^n$. Then $N_m = q^{mn}$ so

$$Z_X(T) = \exp\left(\sum_{m \ge 1} \frac{q^{mn}}{m} T^m\right) = \exp(-\log(1-q^n)) = \frac{1}{1-q^n T}.$$

Proposition 34.7. Suppose that Y is a closed subvariety of X, and set $U = X \setminus Y$. Then

$$Z_X(T) = Z_Y(T) \cdot Z_U(T).$$

Proof. This follows from properties of the exp and the fact that $\#X(\mathbb{F}_{q^m}) = \#Y(\mathbb{F}_{q^m}) + \#U(\mathbb{F}_{q^m})$.

Example 34.8. Let $X_n = \mathbb{P}^n$. As a base case, we have $X_0 \cong \mathbb{A}^0$ is a point and thus $Z_{X_0}(T) = \frac{1}{1-T}$. In general, we may take $Y = \mathbb{P}^{n-1}$ and $U = \mathbb{A}^n$. Thus $Z_{X_n}(T) = \frac{Z_{X_{n-1}}(T)}{1-q^n T}$, so by induction we get

$$Z_{X_n}(T) = \frac{1}{(1-T)(1-qT)\dots(1-q^nT)}.$$

34.3 The Weil Conjectures

We are now ready to state the Weil conjectures. Despite the name, they are now a theorem: after being conjectured by Weil in 1949 the rationality of $Z_X(T)$ was shown by Dwork in 1960, the functional equation by Grothendieck in 1965, and the Riemann hypothesis by Deligne in 1974.

Theorem 34.9. Suppose that X is a smooth, geometrically irreducible, projective variety of dimension n defined over \mathbb{F}_q .

- 1. (Rationality) The zeta function of X is rational, ie $Z_X(T) \in \mathbb{Q}(T)$.
- 2. (Functional equation) There is an integer χ so that

$$Z_X\left(\frac{1}{q^nT}\right) = \pm q^{n\chi/2}T^{\chi}Z_X(T).$$

3. (Riemann hypothesis) There is a decomposition

$$Z_X(T) = \frac{P_1(T) \dots P_{2n-1}(T)}{P_0(T) \dots P_{2n}(T)},$$

where each $P_i(T) \in \mathbb{Z}[T]$ can be factored over \mathbb{C} as

$$P_i(T) = \prod_{j=1}^{b_i} (1 - \alpha_{i,j}T)$$

with $|\alpha_{i,j}| = q^{i/2}$. We also have $P_0(T) = 1 - T$ and $P_{2n}(T) = 1 - q^n T^{2n}$.

The integer χ is the Euler characteristic of X, and can be expressed either as the alternating sum $\sum_{i=0}^{2n} (-1)^i b_i$ or as the intersection multiplicity of the diagonal Δ with itself in $X \times X$. Moreover, if R is a finitely generated subalgebra of \mathbb{C} , \tilde{X} is a smooth projective variety over R, P a prime ideal of R with $R/P \cong \mathbb{F}_q$ and X is the reduction of \tilde{X} modulo P then the integers b_i are the dimensions of the singular cohomology groups

$$b_i = \dim_{\mathbb{Q}} H^i((X_{\mathbb{C}})^{an}, \mathbb{Q}).$$

Setting $\zeta_X(s) = Z_X(q^{-s})$ and $\xi_X(s) = q^{-\chi s/2} \zeta_X(s)$ makes the connection with the Riemann zeta function more clear. The functional equation becomes

$$\xi_X(n-s) = \pm \xi_X(s).$$

In the case of a smooth projective curve, the zeros of $Z_X(T)$ are precisely the zeros of the numerator $P_1(T)$, which all have absolute value \sqrt{q} by the Riemann hypothesis. Translating to $\zeta_X(s)$ we see that the zeros of $\zeta_X(s)$ have $\operatorname{Re}(s) = 1/2$, justifying the use of the term "Riemann hypothesis."

The constraints that all roots of P_i have absolute value q^i is a serious one. For a fixed q, i and degree b_i there are only finitely many polynomials $P_i(T)$ satisfying this condition. One can list all such polynomials in Sage as follows:

from sage.rings.polynomial.weil_weil_polynomials import WeilPolynomials
for f in WeilPolynomials(n, q):
 print(f)

For example, there are 35 possible $P_1(T)$ of degree 4 when q = 2. For small values of n and q, these are also listed online at lmfdb.org/Variety/Abelian/Fq/.⁶

We may also translate the statements about $Z_X(T)$ into more direct statements about the number of points N_m of X over \mathbb{F}_{q^m} . Namely, if X is a smooth projective variety of dimension n then there are algebraic integers $\alpha_{i,j}$ so that

$$\#X(\mathbb{F}_{q^m}) = \sum_{j=1}^{b_0} \alpha_{0,j}^m - \sum_{j=1}^{b_1} \alpha_{1,j}^m + \dots - \sum_{j=1}^{b_{2n-1}} \alpha_{2n-1,j}^m + \sum_{j=1}^{b_{2n}} \alpha_{2n,j}^m$$

with

- $b_i = b_{2n-i}$,
- $\alpha_{i,j} = q^n / \alpha_{2n-i,j}$ for $i \neq n$ and $\alpha_{n,j} = q^n / \alpha_{n,b_n+1-j}$,
- $|\alpha_{i,j}| = q^{i/2}$ for all i, j,
- if X is geometrically irreducible then $b_0 = b_{2n} = 1$ and $\alpha_{0,1} = 1$, $\alpha_{2n,1} = q^n$.

⁶Actually, only a certain subset are shown in the LMFDB, subject to the conditions of the Honda-Tate theorem that describes isogeny classes of abelian varieties over finite fields in terms of Weil polynomials

References

- Lars Ahlfors. Complex analysis: an introduction to the theory of analytic functions of one complex variable. 3rd ed., McGraw-Hill Book Co., New York, 1978.
- [2] Noam Elkies. Math 259: the Riemann zeta function and its functional equation. http://people.math. harvard.edu/~elkies/M259.02/zeta1.pdf
- [3] James Milne. Lectures on étale cohomology. https://www.jmilne.org/math/CourseNotes/LEC. pdf
- [4] Mircea Mustață. Zeta functions in algebraic geometry. http://www-personal.umich.edu/ ~mmustata/zeta_book.pdf
- Bjorn Poonen. Rational points on varieties. Graduate Studies in Mathematics 186. Amer. Math. Soc., Providence, 2017. https://math.mit.edu/~poonen/papers/Qpoints.pdf
- [6] Don Zagier. Newman's short proof of the prime number theorem. Amer. Math. Monthly 104 (8), 1997. pp. 705-708.