
18.782 Introduction to Arithmetic Geometry Fall 2020
Lecture #34 11/30/2020

These notes on the Weil conjectures are a blend of the exposition in Poonen [5, Chap.
7], Milne [3, Chap. II] and Mustaţă [4].

34.1 Riemann and Dedekind zeta functions

Our main object of interest will be the Hasse-Weil zeta function associated to a variety
over a finite field, but we begin with a brief discussion of the Riemann zeta function for
comparison and motivation.

For a complex number s with Re(s) > 1, we define

ζ(s) =

∞∑
n=1

1

ns
. (1)

Though there are interesting features to investigate in the right “half” of the plane (for
example, ζ2m/π

2m ∈ Q for m ∈ Z), the main interest in the zeta function lies in its
extension to the critical strip {z ∈ C : 0 ≤ Re(z) ≤ 1}. This extension relies on a theorem
in complex analysis: if U ⊂ V are nonempty connected open subsets of C and f(z) and g(z)
are holomorphic functions on V that agree on U then f(z) = g(z) for all z ∈ V .1 We may
thus speak of the analytic continuation of a holomorphic function to a larger open subset
of C (or the meromorphic continuation if we allow poles); such a continuation is unique by
the argument above, but may or may not exist for a given subset. The function defined by
(1) in fact has a meromorphic continuation to the whole complex plane, with one simple
pole at s = 1. The resulting function is known as the Riemann zeta function.

The proof of analytic continuation2 is closely connected to the functional equation for
ζ(s). Recall that the Γ function is a complex meromorphic function function extending the
factorial function; it is defined for Re(s) > 0 by the integral equation

Γ(s) =

∫ ∞
0

xs−1e−xdx.

Meromorphic continuation to C is much easier for Γ than for ζ since Γ satisfies3 Γ(s+ 1) =
sΓ(s) using integration by parts:

Γ(s+ 1) =

∫ ∞
0

xse−xdx =
[
−xse−x

]∞
0

+

∫ ∞
0

sxs−1e−xdx = sΓ(s).

We can use the functional equation to iteratively extend Γ into the half planes {s ∈ C :
Re(s) > −m} for m = 1, 2, . . . using Γ(s) = 1/sΓ(s+ 1). This process yields no zeros, and
simple poles at non-positive integers. The functional equation also confirms that Γ extends
the factorial function: we have Γ(n) = (n− 1)! for n ∈ Z>0.

1This follows from the fact that Taylor series for holomorphic functions converge in a disc and thus a
nonzero holomorphic function cannot vanish completely on a disc. Note the contrast with real C∞ functions:

f(x) = e−1/x2 for x > 0 and f(x) = 0 for x ≤ 0 is C∞.
2The proof would take us too far afield into analytic number theory, but is readily available, e.g. [1, Ch.

5 §4.2-4.4] or [2]
3This functional equation is enough to characterize the Γ function if one additionally requires log(Γ(s))

is convex on the positive real axis

1



Now define an auxiliary function4 ξ(s) by

ξ(s) = π−s/2Γ(s/2)ζ(s).

One proves that the function s(s − 1)ξ(s) is analytic on all of C and gives the functional
equation for ζ(s):

ξ(s) = ξ(1− s). (2)

The main connection of ζ(s) to number theory comes from its expression as an Euler
product.

Proposition 34.1. If Re(s) > 1 then

ζ(s) =
∏

p prime

1

1− p−s
.

Proof. We have

∏
p

1

1− p−s
=
∏
p

∞∑
m=0

(pm)−s

=
∞∑
n=1

n−s

using unique factorization and the fact that
∑∞

m=0 p
−ms is absolutely convergent when

Re(s) > 0.

The Euler product allows us to get an initial handle on where the zeros of ζ(s) lie.

Proposition 34.2. If ζ(s) = 0 then either s/2 ∈ Z≤0 or 0 ≤ Re(s) ≤ 1.

Proof. We first show that ζ(s) has no zeros with Re(s) > 1. By Prop. 34.1,

ζ(s) =
∏
p

1

1− p−s

=
∏
p

(
1 +

1

ps − 1

)

Since
∑

p
1

ps−1 converges absolutely, this product converges and is thus nonzero.
The result now follows from the functional equation (2) together with the fact that Γ

only has poles at non-positive integers.

Why do we care about the zeros of ζ(s)? The first spectacular application was to proving
the following theorem on the distribution of prime numbers. Let π(x) be the number of
primes less than or equal to x.

Theorem 34.3 (Prime number theorem). The probability that a random integer with k
base-e digits is prime is asymptotic to 1/k. More precisely, π(x) ∼ x/ log(x).

4Sometimes ξ(s) is scaled by s(s− 1) in order to cancel the poles and make it entire
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Proof. Let ϑ(x) =
∑

p≤x log(p). The proof has the following structure. First, show that
there are no zeros of ζ(s) with Re(s) = 1. Second, use this zero-free line together with
analytic results to show that ϑ(x) ∼ x. Finally, note that

ϑ(x) =
∑
p≤x

log(p) ≤
∑
p≤x

log(x) = π(x) log(x)

ϑ(x) ≥
∑

x1−ε≤p≤x

log(p) ≥ (1− ε)
∑

x1−ε≤p≤x

log(x)

= (1− ε) log(x)(π(x) +O(x1−ε)).

For more details, see Zagier’s short article [6].

So the nontrivial zeros of ζ(s) are known to lie in the open critical strip with 0 < Re(s) <
1, but more is believed to be true:

Conjecture 34.4 (Riemann hypothesis). All nontrivial zeros of ζ(s) have Re(s) = 1/2.

The conjecture is known to hold for the first 10 trillion zeros and for at least 41% of
all nontrivial zeros. A proof is worth one million dollars from the Clay Math Institute,
and it is one of the most common assumptions for conditional results in the mathematical
literature.5

The broad class of generalizations of ζ(s) are known as L-functions, but we will focus
on the subset of zeta functions among them. Suppose K is a number field. The Dedekind
zeta function of K is the meromorphic continuation of

ζK(s) =
∑
I⊆OK

1

NmK/Q(I)s
=

∏
P prime ideal

1

1−NmK/Q(P )−s
. (3)

34.2 Hasse-Weil zeta functions

Suppose now thatX is a variety over a finite field k = Fq. Since Fq is finite, we may count the
number of points, not just over Fq but also for any extension Fqm/Fq. Let Nm = #X(Fqm),
and let Xcl. We then define the Hasse-Weil zeta function of X to be the power series

ZX(T ) = exp

( ∞∑
m=1

Nm

m
Tm

)
∈ Q[[T ]].

The use of the term “zeta function” is justified by the following proposition.

Proposition 34.5. For any variety X over Fq,

ZX(T ) =
∏
x∈Xcl

1

1− T deg(x)
.

5See https://mathoverflow.net/questions/17209/consequences-of-the-riemann-hypothesis
for a list of major consequences of the Riemann hypothesis and the generalized Riemann hypothesis, which
also considers zeros of Dirichlet L-functions
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Proof. For r ≥ 1, let ar = #{x ∈ Xcl : [k(x) : k] = r}. Note that Nm =
∑

r|m r · ar. We
have

log(ZX(T )) =
∑
m≥1

Nm

m
Tm =

∑
m≥1

∑
r|m

r · ar
m

Tm =
∑
r≥1

ar
∑
`≥1

T `r

`

=
∑
r≥1

(−ar) log(1− T r) =
∑
r≥1

log(1− T r)−ar = log

∏
r≥1

(1− T r)−ar
 .

Applying log to both sides we get the result.

If we substitute T = q−s we get a function that looks very similar to the Dedekind zeta
function in (3). Also note that Prop. 34.5 implies that ZX(T ) ∈ Z[[T ]].

Example 34.6. Let X = An. Then Nm = qmn so

ZX(T ) = exp

∑
m≥1

qmn

m
Tm

 = exp(− log(1− qn)) =
1

1− qnT
.

Proposition 34.7. Suppose that Y is a closed subvariety of X, and set U = X\Y . Then

ZX(T ) = ZY (T ) · ZU (T ).

Proof. This follows from properties of the exp and the fact that #X(Fqm) = #Y (Fqm) +
#U(Fqm).

Example 34.8. Let Xn = Pn. As a base case, we have X0
∼= A0 is a point and thus

ZX0(T ) = 1
1−T . In general, we may take Y = Pn−1 and U = An. Thus ZXn(T ) =

ZXn−1
(T )

1−qnT ,
so by induction we get

ZXn(T ) =
1

(1− T )(1− qT ) . . . (1− qnT )
.

34.3 The Weil Conjectures

We are now ready to state the Weil conjectures. Despite the name, they are now a theorem:
after being conjectured by Weil in 1949 the rationality of ZX(T ) was shown by Dwork in
1960, the functional equation by Grothendieck in 1965, and the Riemann hypothesis by
Deligne in 1974.

Theorem 34.9. Suppose that X is a smooth, geometrically irreducible, projective variety
of dimension n defined over Fq.

1. (Rationality) The zeta function of X is rational, ie ZX(T ) ∈ Q(T ).

2. (Functional equation) There is an integer χ so that

ZX

(
1

qnT

)
= ±qnχ/2TχZX(T ).
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3. (Riemann hypothesis) There is a decomposition

ZX(T ) =
P1(T ) . . . P2n−1(T )

P0(T ) . . . P2n(T )
,

where each Pi(T ) ∈ Z[T ] can be factored over C as

Pi(T ) =

bi∏
j=1

(1− αi,jT )

with |αi,j | = qi/2. We also have P0(T ) = 1− T and P2n(T ) = 1− qnT 2n.

The integer χ is the Euler characteristic of X, and can be expressed either as the alternating
sum

∑2n
i=0(−1)ibi or as the intersection multiplicity of the diagonal ∆ with itself in X ×X.

Moreover, if R is a finitely generated subalgebra of C, X̃ is a smooth projective variety over
R, P a prime ideal of R with R/P ∼= Fq and X is the reduction of X̃ modulo P then the
integers bi are the dimensions of the singular cohomology groups

bi = dimQH
i((X̃C)an,Q).

Setting ζX(s) = ZX(q−s) and ξX(s) = q−χs/2ζX(s) makes the connection with the
Riemann zeta function more clear. The functional equation becomes

ξX(n− s) = ±ξX(s).

In the case of a smooth projective curve, the zeros of ZX(T ) are precisely the zeros of the
numerator P1(T ), which all have absolute value

√
q by the Riemann hypothesis. Translating

to ζX(s) we see that the zeros of ζX(s) have Re(s) = 1/2, justifying the use of the term
“Riemann hypothesis.”

The constraints that all roots of Pi have absolute value qi is a serious one. For a fixed
q, i and degree bi there are only finitely many polynomials Pi(T ) satisfying this condition.
One can list all such polynomials in Sage as follows:

from sage.rings.polynomial.weil.weil_polynomials import WeilPolynomials
for f in WeilPolynomials(n, q):

print(f)

For example, there are 35 possible P1(T ) of degree 4 when q = 2. For small values of n and
q, these are also listed online at lmfdb.org/Variety/Abelian/Fq/.6

We may also translate the statements about ZX(T ) into more direct statements about
the number of points Nm of X over Fqm . Namely, if X is a smooth projective variety of
dimension n then there are algebraic integers αi,j so that

#X(Fqm) =

b0∑
j=1

αm0,j −
b1∑
j=1

αm1,j + · · · −
b2n−1∑
j=1

αm2n−1,j +

b2n∑
j=1

αm2n,j

with

• bi = b2n−i,

• αi,j = qn/α2n−i,j for i 6= n and αn,j = qn/αn,bn+1−j ,

• |αi,j | = qi/2 for all i, j,

• if X is geometrically irreducible then b0 = b2n = 1 and α0,1 = 1, α2n,1 = qn.
6Actually, only a certain subset are shown in the LMFDB, subject to the conditions of the Honda-Tate

theorem that describes isogeny classes of abelian varieties over finite fields in terms of Weil polynomials
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