These notes on the Weil conjectures are a blend of the exposition in Poonen [5, Chap. 7], Milne [3, Chap. II] and Mustaţă [4].

34.1 Riemann and Dedekind zeta functions

Our main object of interest will be the Hasse-Weil zeta function associated to a variety over a finite field, but we begin with a brief discussion of the Riemann zeta function for comparison and motivation.

For a complex number s with $\operatorname{Re}(s)>1$, we define

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} . \tag{1}
\end{equation*}
$$

Though there are interesting features to investigate in the right "half" of the plane (for example, $\zeta_{2 m} / \pi^{2 m} \in \mathbb{Q}$ for $m \in \mathbb{Z}$), the main interest in the zeta function lies in its extension to the critical strip $\{z \in \mathbb{C}: 0 \leq \operatorname{Re}(z) \leq 1\}$. This extension relies on a theorem in complex analysis: if $U \subset V$ are nonempty connected open subsets of \mathbb{C} and $f(z)$ and $g(z)$ are holomorphic functions on V that agree on U then $f(z)=g(z)$ for all $z \in V$. ${ }^{1}$ We may thus speak of the analytic continuation of a holomorphic function to a larger open subset of \mathbb{C} (or the meromorphic continuation if we allow poles); such a continuation is unique by the argument above, but may or may not exist for a given subset. The function defined by (1) in fact has a meromorphic continuation to the whole complex plane, with one simple pole at $s=1$. The resulting function is known as the Riemann zeta function.

The proof of analytic continuation ${ }^{2}$ is closely connected to the functional equation for $\zeta(s)$. Recall that the Γ function is a complex meromorphic function function extending the factorial function; it is defined for $\operatorname{Re}(s)>0$ by the integral equation

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

Meromorphic continuation to \mathbb{C} is much easier for Γ than for ζ since Γ satisfies $^{3} \Gamma(s+1)=$ $s \Gamma(s)$ using integration by parts:

$$
\Gamma(s+1)=\int_{0}^{\infty} x^{s} e^{-x} d x=\left[-x^{s} e^{-x}\right]_{0}^{\infty}+\int_{0}^{\infty} s x^{s-1} e^{-x} d x=s \Gamma(s)
$$

We can use the functional equation to iteratively extend Γ into the half planes $\{s \in \mathbb{C}$: $\operatorname{Re}(s)>-m\}$ for $m=1,2, \ldots$ using $\Gamma(s)=1 / s \Gamma(s+1)$. This process yields no zeros, and simple poles at non-positive integers. The functional equation also confirms that Γ extends the factorial function: we have $\Gamma(n)=(n-1)$! for $n \in \mathbb{Z}_{>0}$.

[^0]Now define an auxiliary function ${ }^{4} \xi(s)$ by

$$
\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)
$$

One proves that the function $s(s-1) \xi(s)$ is analytic on all of \mathbb{C} and gives the functional equation for $\zeta(s)$:

$$
\begin{equation*}
\xi(s)=\xi(1-s) \tag{2}
\end{equation*}
$$

The main connection of $\zeta(s)$ to number theory comes from its expression as an Euler product.

Proposition 34.1. If $\operatorname{Re}(s)>1$ then

$$
\zeta(s)=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

Proof. We have

$$
\begin{aligned}
\prod_{p} \frac{1}{1-p^{-s}} & =\prod_{p} \sum_{m=0}^{\infty}\left(p^{m}\right)^{-s} \\
& =\sum_{n=1}^{\infty} n^{-s}
\end{aligned}
$$

using unique factorization and the fact that $\sum_{m=0}^{\infty} p^{-m s}$ is absolutely convergent when $\operatorname{Re}(s)>0$.

The Euler product allows us to get an initial handle on where the zeros of $\zeta(s)$ lie.
Proposition 34.2. If $\zeta(s)=0$ then either $s / 2 \in \mathbb{Z}_{\leq 0}$ or $0 \leq \operatorname{Re}(s) \leq 1$.
Proof. We first show that $\zeta(s)$ has no zeros with $\operatorname{Re}(s)>1$. By Prop. 34.1,

$$
\begin{aligned}
\zeta(s) & =\prod_{p} \frac{1}{1-p^{-s}} \\
& =\prod_{p}\left(1+\frac{1}{p^{s}-1}\right)
\end{aligned}
$$

Since $\sum_{p} \frac{1}{p^{s}-1}$ converges absolutely, this product converges and is thus nonzero.
The result now follows from the functional equation (2) together with the fact that Γ only has poles at non-positive integers.

Why do we care about the zeros of $\zeta(s)$? The first spectacular application was to proving the following theorem on the distribution of prime numbers. Let $\pi(x)$ be the number of primes less than or equal to x.

Theorem 34.3 (Prime number theorem). The probability that a random integer with k base-e digits is prime is asymptotic to $1 / k$. More precisely, $\pi(x) \sim x / \log (x)$.

[^1]Proof. Let $\vartheta(x)=\sum_{p \leq x} \log (p)$. The proof has the following structure. First, show that there are no zeros of $\bar{\zeta}(s)$ with $\operatorname{Re}(s)=1$. Second, use this zero-free line together with analytic results to show that $\vartheta(x) \sim x$. Finally, note that

$$
\begin{aligned}
\vartheta(x) & =\sum_{p \leq x} \log (p) \leq \sum_{p \leq x} \log (x)=\pi(x) \log (x) \\
\vartheta(x) & \geq \sum_{x^{1-\epsilon} \leq p \leq x} \log (p) \geq(1-\epsilon) \sum_{x^{1-\epsilon} \leq p \leq x} \log (x) \\
& =(1-\epsilon) \log (x)\left(\pi(x)+O\left(x^{1-\epsilon}\right)\right) .
\end{aligned}
$$

For more details, see Zagier's short article [6].
So the nontrivial zeros of $\zeta(s)$ are known to lie in the open critical strip with $0<\operatorname{Re}(s)<$ 1 , but more is believed to be true:

Conjecture 34.4 (Riemann hypothesis). All nontrivial zeros of $\zeta(s)$ have $\operatorname{Re}(s)=1 / 2$.
The conjecture is known to hold for the first 10 trillion zeros and for at least 41% of all nontrivial zeros. A proof is worth one million dollars from the Clay Math Institute, and it is one of the most common assumptions for conditional results in the mathematical literature. ${ }^{5}$

The broad class of generalizations of $\zeta(s)$ are known as L-functions, but we will focus on the subset of zeta functions among them. Suppose K is a number field. The Dedekind zeta function of K is the meromorphic continuation of

$$
\begin{equation*}
\zeta_{K}(s)=\sum_{I \subseteq \mathcal{O}_{K}} \frac{1}{\operatorname{Nm}_{K / \mathbb{Q}}(I)^{s}}=\prod_{P \text { prime ideal }} \frac{1}{1-\operatorname{Nm}_{K / \mathbb{Q}}(P)^{-s}} \tag{3}
\end{equation*}
$$

34.2 Hasse-Weil zeta functions

Suppose now that X is a variety over a finite field $k=\mathbb{F}_{q}$. Since \mathbb{F}_{q} is finite, we may count the number of points, not just over \mathbb{F}_{q} but also for any extension $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$. Let $N_{m}=\# X\left(\mathbb{F}_{q^{m}}\right)$, and let X_{cl}. We then define the Hasse-Weil zeta function of X to be the power series

$$
Z_{X}(T)=\exp \left(\sum_{m=1}^{\infty} \frac{N_{m}}{m} T^{m}\right) \in \mathbb{Q}[[T]]
$$

The use of the term "zeta function" is justified by the following proposition.
Proposition 34.5. For any variety X over \mathbb{F}_{q},

$$
Z_{X}(T)=\prod_{x \in X_{\mathrm{cl}}} \frac{1}{1-T^{\operatorname{deg}(x)}}
$$

[^2]Proof. For $r \geq 1$, let $a_{r}=\#\left\{x \in X_{\mathrm{cl}}:[k(x): k]=r\right\}$. Note that $N_{m}=\sum_{r \mid m} r \cdot a_{r}$. We have

$$
\begin{aligned}
\log \left(Z_{X}(T)\right) & =\sum_{m \geq 1} \frac{N_{m}}{m} T^{m}=\sum_{m \geq 1} \sum_{r \mid m} \frac{r \cdot a_{r}}{m} T^{m}=\sum_{r \geq 1} a_{r} \sum_{\ell \geq 1} \frac{T^{\ell r}}{\ell} \\
& =\sum_{r \geq 1}\left(-a_{r}\right) \log \left(1-T^{r}\right)=\sum_{r \geq 1} \log \left(1-T^{r}\right)^{-a_{r}}=\log \left(\prod_{r \geq 1}\left(1-T^{r}\right)^{-a_{r}}\right)
\end{aligned}
$$

Applying \log to both sides we get the result.
If we substitute $T=q^{-s}$ we get a function that looks very similar to the Dedekind zeta function in (3). Also note that Prop. 34.5 implies that $Z_{X}(T) \in \mathbb{Z}[[T]]$.

Example 34.6. Let $X=\mathbb{A}^{n}$. Then $N_{m}=q^{m n}$ so

$$
Z_{X}(T)=\exp \left(\sum_{m \geq 1} \frac{q^{m n}}{m} T^{m}\right)=\exp \left(-\log \left(1-q^{n}\right)\right)=\frac{1}{1-q^{n} T}
$$

Proposition 34.7. Suppose that Y is a closed subvariety of X, and set $U=X \backslash Y$. Then

$$
Z_{X}(T)=Z_{Y}(T) \cdot Z_{U}(T)
$$

Proof. This follows from properties of the exp and the fact that $\# X\left(\mathbb{F}_{q^{m}}\right)=\# Y\left(\mathbb{F}_{q^{m}}\right)+$ $\# U\left(\mathbb{F}_{q^{m}}\right)$.

Example 34.8. Let $X_{n}=\mathbb{P}^{n}$. As a base case, we have $X_{0} \cong \mathbb{A}^{0}$ is a point and thus $Z_{X_{0}}(T)=\frac{1}{1-T}$. In general, we may take $Y=\mathbb{P}^{n-1}$ and $U=\mathbb{A}^{n}$. Thus $Z_{X_{n}}(T)=\frac{Z_{X_{n-1}}(T)}{1-q^{n} T}$, so by induction we get

$$
Z_{X_{n}}(T)=\frac{1}{(1-T)(1-q T) \ldots\left(1-q^{n} T\right)}
$$

34.3 The Weil Conjectures

We are now ready to state the Weil conjectures. Despite the name, they are now a theorem: after being conjectured by Weil in 1949 the rationality of $Z_{X}(T)$ was shown by Dwork in 1960, the functional equation by Grothendieck in 1965, and the Riemann hypothesis by Deligne in 1974.

Theorem 34.9. Suppose that X is a smooth, geometrically irreducible, projective variety of dimension n defined over \mathbb{F}_{q}.

1. (Rationality) The zeta function of X is rational, ie $Z_{X}(T) \in \mathbb{Q}(T)$.
2. (Functional equation) There is an integer χ so that

$$
Z_{X}\left(\frac{1}{q^{n} T}\right)= \pm q^{n \chi / 2} T^{\chi} Z_{X}(T)
$$

3. (Riemann hypothesis) There is a decomposition

$$
Z_{X}(T)=\frac{P_{1}(T) \ldots P_{2 n-1}(T)}{P_{0}(T) \ldots P_{2 n}(T)}
$$

where each $P_{i}(T) \in \mathbb{Z}[T]$ can be factored over \mathbb{C} as

$$
P_{i}(T)=\prod_{j=1}^{b_{i}}\left(1-\alpha_{i, j} T\right)
$$

$$
\text { with }\left|\alpha_{i, j}\right|=q^{i / 2} . \text { We also have } P_{0}(T)=1-T \text { and } P_{2 n}(T)=1-q^{n} T^{2 n}
$$

The integer χ is the Euler characteristic of X, and can be expressed either as the alternating sum $\sum_{i=0}^{2 n}(-1)^{i} b_{i}$ or as the intersection multiplicity of the diagonal Δ with itself in $X \times X$. Moreover, if R is a finitely generated subalgebra of \mathbb{C}, \tilde{X} is a smooth projective variety over R, P a prime ideal of R with $R / P \cong \mathbb{F}_{q}$ and X is the reduction of \tilde{X} modulo P then the integers b_{i} are the dimensions of the singular cohomology groups

$$
b_{i}=\operatorname{dim}_{\mathbb{Q}} H^{i}\left(\left(\tilde{X}_{\mathbb{C}}\right)^{a n}, \mathbb{Q}\right)
$$

Setting $\zeta_{X}(s)=Z_{X}\left(q^{-s}\right)$ and $\xi_{X}(s)=q^{-\chi s / 2} \zeta_{X}(s)$ makes the connection with the Riemann zeta function more clear. The functional equation becomes

$$
\xi_{X}(n-s)= \pm \xi_{X}(s)
$$

In the case of a smooth projective curve, the zeros of $Z_{X}(T)$ are precisely the zeros of the numerator $P_{1}(T)$, which all have absolute value \sqrt{q} by the Riemann hypothesis. Translating to $\zeta_{X}(s)$ we see that the zeros of $\zeta_{X}(s)$ have $\operatorname{Re}(s)=1 / 2$, justifying the use of the term "Riemann hypothesis."

The constraints that all roots of P_{i} have absolute value q^{i} is a serious one. For a fixed q, i and degree b_{i} there are only finitely many polynomials $P_{i}(T)$ satisfying this condition. One can list all such polynomials in Sage as follows:

```
from sage.rings.polynomial.weil.weil_polynomials import WeilPolynomials
for f in WeilPolynomials(n, q):
    print(f)
```

For example, there are 35 possible $P_{1}(T)$ of degree 4 when $q=2$. For small values of n and q, these are also listed online at lmfdb. org/Variety/Abelian/Fq/. ${ }^{6}$

We may also translate the statements about $Z_{X}(T)$ into more direct statements about the number of points N_{m} of X over $\mathbb{F}_{q^{m}}$. Namely, if X is a smooth projective variety of dimension n then there are algebraic integers $\alpha_{i, j}$ so that

$$
\# X\left(\mathbb{F}_{q^{m}}\right)=\sum_{j=1}^{b_{0}} \alpha_{0, j}^{m}-\sum_{j=1}^{b_{1}} \alpha_{1, j}^{m}+\cdots-\sum_{j=1}^{b_{2 n-1}} \alpha_{2 n-1, j}^{m}+\sum_{j=1}^{b_{2 n}} \alpha_{2 n, j}^{m}
$$

with

- $b_{i}=b_{2 n-i}$,
- $\alpha_{i, j}=q^{n} / \alpha_{2 n-i, j}$ for $i \neq n$ and $\alpha_{n, j}=q^{n} / \alpha_{n, b_{n}+1-j}$,
- $\left|\alpha_{i, j}\right|=q^{i / 2}$ for all i, j,
- if X is geometrically irreducible then $b_{0}=b_{2 n}=1$ and $\alpha_{0,1}=1, \alpha_{2 n, 1}=q^{n}$.

[^3]
References

[1] Lars Ahlfors. Complex analysis: an introduction to the theory of analytic functions of one complex variable. 3rd ed., McGraw-Hill Book Co., New York, 1978.
[2] Noam Elkies. Math 259: the Riemann zeta function and its functional equation. http://people.math. harvard.edu/~elkies/M259.02/zetal.pdf
[3] James Milne. Lectures on étale cohomology. https://www.jmilne.org/math/CourseNotes/LEC. pdf
[4] Mircea Mustaţă. Zeta functions in algebraic geometry. http://www-personal.umich.edu/ ~mmustata/zeta_book.pdf
[5] Bjorn Poonen. Rational points on varieties. Graduate Studies in Mathematics 186. Amer. Math. Soc., Providence, 2017. https://math.mit.edu/~poonen/papers/Qpoints.pdf
[6] Don Zagier. Newman's short proof of the prime number theorem. Amer. Math. Monthly 104 (8), 1997. pp. 705-708.

[^0]: ${ }^{1}$ This follows from the fact that Taylor series for holomorphic functions converge in a disc and thus a nonzero holomorphic function cannot vanish completely on a disc. Note the contrast with real C^{∞} functions: $f(x)=e^{-1 / x^{2}}$ for $x>0$ and $f(x)=0$ for $x \leq 0$ is C^{∞}.
 ${ }^{2}$ The proof would take us too far afield into analytic number theory, but is readily available, e.g. [1, Ch. 5 §4.2-4.4] or [2]
 ${ }^{3}$ This functional equation is enough to characterize the Γ function if one additionally requires $\log (\Gamma(s))$ is convex on the positive real axis

[^1]: ${ }^{4}$ Sometimes $\xi(s)$ is scaled by $s(s-1)$ in order to cancel the poles and make it entire

[^2]: ${ }^{5}$ See https://mathoverflow.net/questions/17209/consequences-of-the-riemann-hypothesis for a list of major consequences of the Riemann hypothesis and the generalized Riemann hypothesis, which also considers zeros of Dirichlet L-functions

[^3]: ${ }^{6}$ Actually, only a certain subset are shown in the LMFDB, subject to the conditions of the Honda-Tate theorem that describes isogeny classes of abelian varieties over finite fields in terms of Weil polynomials

