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33.1 Faltings’ theorem

We have seen that in genus 0, curves have either no points or infinitely many (parameterized
by P1). In genus 1, the Mordell-Weil theorem explains the structure when there is at least
one point: it can be finite (rank 0) or infinite, but it is finitely generated in each case. The
following theorem, conjectured by Mordell in 1922 and proven by Faltings in 1983, describes
the situation for curves of genus larger than 1.

Theorem 33.1. Suppose k is a number field and C/k is a curve of genus g > 1. Then
C(k) is finite.

The original proof [1] is very technical and involved. There are two alternate proofs
known: the first rests on an inequality of Vojta [2] and the second on results from p-adic
Hodge theory [4].

Remark 33.2. An analogue of Falting’s theorem holds in the function field setting (where
k is a finite extension of Fq(x)), but an additional assumption is needed that C is not
isotrivial. This rules out curves that arise via base change from Fq for example. This
analogue was proven earlier, in 1966.

33.2 Jacobian varieties

If k is a field and C/k is a smooth projective curve, then the group Pic0k(C) has the structure
of a projective variety over k. Since it is also a group (and the group operations are regular
maps), it is an abelian variety. This variety is called the Jacobian of C, and we will denote
it JC . See [5, Chapter 3] for a more detailed exposition.

We can get a better understanding of JC by considering symmetric powers of C. If
r ∈ Z≥1, write Cr for the product of r copies of C with itself.

Definition 33.3. The rth symmetric power C(r) of C is the quotient of Cr by the action
of the symmetric group. Specifically, the quotient definition holds for C(r) as a topological
space, and if U is an affine open subset of C then the functions on the affine open U (r) ⊂ C(r)

are defined as those functions on U r that are fixed by all permutations.

There is a canonical identification of C(r) with effective divisors on C of degree r, since
a formal sum is just an unordered multiset of points on C.

Proposition 33.4. If C is a smooth projective curve then C(r) is a smooth variety of
dimension r.

Proof. Taking a quotient by a finite group action does not change the dimension. Smooth-
ness follows from the fact that any symmetric polynomial can be expressed as a polynomial
in the elementary symmetric functions. For more details see [5, III.3.2].

If P0 ∈ C(k), we may define a natural map αr : C(r) → JC by

(P1, . . . , Pr) 7→ P1 + · · ·+ Pr − rP0.
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Theorem 33.5. Let g be the genus of C. For 1 ≤ r ≤ g, the image of αr is a closed
subvariety Wr of JC , and αr : C(r) → Wr is birational. In particular, C(g) is birational to
JC .

Proof. See [5, III.5].

For elliptic curves, we saw α1 in Theorem 23.16, where it was an isomorphism and not
just birational. In general, α1 provides an embedding of C into JC (under the assumption
that C has at least one rational point!). The images arising from different choices of P0 are
related by translation on JC .

The definition of isogeny naturally extends to abelian varieties:

Definition 33.6. If A and A′ are abelian varieties, an isogeny from A to A′ is a surjective
morphism φ : A→ A′ with finite kernel.

Over an algebraically closed field, if g ≤ 3 then every principally polarized1 abelian
variety of dimension g is isogenous to the Jacobian of a genus g curve. For g ≥ 4, the
moduli space of genus g curves has smaller dimension than the moduli space of abelian
varieties of dimension g, so this can no longer hold. But it is the case that any abelian
variety is the quotient of a Jacobian [5, III.10.1].

33.3 Mordell-Weil for abelian varieties

The Mordell-Weil theorem holds for abelian varieties over number fields:

Theorem 33.7. Suppose k is a number field and A/k is an abelian variety. Then A(k) is
a finitely generated abelian group.

The proof has the same overall structure as for elliptic curves: prove that A(k)/2A(k)
is finite, and then use heights to show that A(k) is finitely generated. For more details, see
[3, Chapter 6].

33.4 Vojta’s Inequality

Set JR = JC(k) ⊗ R. By the Mordell-Weil theorem, this is a finite dimensional R-vector
space. Just as for elliptic curves, there is a canonical height function on JC(k) that induces
a positive definite quadratic form on JR, which we write as |x|. As usual, we write 〈x, y〉
for the associated inner product:

〈x, y〉 =
1

2
(|x+ y|2 − |x|2 − |y|2).

Theorem 33.8 (Vojta’s Inequality). There are constants κ1 = κ1(C) and κ2 = κ2(g) so
that, if z, w ∈ C(k) satisfy

|z| ≥ κ1 and |w| ≥ κ2|z|

then

〈z, w〉 ≤ 3

4
|z| · |w|.

Much of Hindry and Silverman’s book [2] is devoted to a proof of this theorem.

1A principal polarization of an abelian variety A is an isomorphism from A to its dual; the dual can be
described as the space of line bundles on A.
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33.5 Proof of Falting’s theorem

We follow the exposition in [2, §E.1].
If C(k) is empty then it is certainly finite. If not, then a choice of point gives an

embedding α1 : C(k) ↪→ JC(k).
Note that the kernel of the map J(k)→ JR is the finite group J(k)tors, so it suffices to

show that the image CR of C(k) in JR is finite. We will do so by covering JR by cones, each
of which has finite intersection with CR. For x ∈ JR, set

Yx = {y ∈ JR : 〈x, y〉 > cos(π/12) · |x| · |y|}.

Lemma 33.9. The intersection Yx ∩ CR is finite.

Proof. Suppose not. Then there is a z ∈ Yx ∩CR with |z| ≥ κ1 since there are only finitely
many z ∈ JR with |z| < κ1. Once z is fixed, we can similarly find w ∈ Yx ∩ CR with
|w| ≥ κ2|z|. By Vojta’s inequality we have

〈z, w〉 ≤ 3

4
|z| · |w|.

But z and w are both in the cone Yx, so the angle between them is at most π/6, and
cos(π/6) > 3/4.

Lemma 33.10. There is a finite set X ⊂ JR so that JR − {0} =
⋃

x∈X Yx.

Proof. Let S be the unit sphere in JR. For any x, if y 6= 0 then y ∈ Yx ⇔ y
|y| ∈ S ∩ Yx since

Yx is a cone. But S is compact and all Yx ∩ S are open subsets of S, so there is a finite
subcover.

Together, the lemmas imply that CR, and thus C(k), is finite.
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