About the proof Transfer principles

Transfer of transfert

Thomas Hales and Julia Gordon

December 2015

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

About the proof Transfer principles

The conjectures (Langlands-Shelstad)

イロト イポト イヨト イヨト ヨー のくぐ

(All this talk: for Standard endoscopy). *G*, *H* – endoscopic groups over a non-archimedean field *F*. **The 'smooth transfer' conjecture**: for any $f \in C_c^{\infty}(G)$, there exists $f^H \in C_c^{\infty}(H)$ such that for all $\gamma_H \in H(F)^{G-rss}$ and $\gamma_G \in G(F)$ in a matching conjugacy class in *G*,

$$\mathsf{O}^{\mathsf{st}}_{\gamma_{\mathsf{H}}}(f^{\mathsf{H}}) = \sum_{\gamma' \sim \gamma_{\mathsf{G}}} \kappa(\gamma', \gamma_{\mathsf{H}}) \mathsf{O}_{\gamma'}(f),$$

(This is for γ_H near 1; otherwise need a central extension \tilde{H} of H and a character on the centre of \tilde{H}).

About the proof Transfer principles

The conjectures (Langlands-Shelstad)

イロト イポト イヨト イヨト ヨー のくぐ

(All this talk: for Standard endoscopy). *G*, *H* – endoscopic groups over a non-archimedean field *F*. **The 'smooth transfer' conjecture**: for any $f \in C_c^{\infty}(G)$, there exists $f^H \in C_c^{\infty}(H)$ such that for all $\gamma_H \in H(F)^{G-rss}$ and $\gamma_G \in G(F)$ in a matching conjugacy class in *G*,

$$\mathsf{O}^{\mathsf{st}}_{\gamma_{\mathsf{H}}}(f^{\mathsf{H}}) = \sum_{\gamma' \sim \gamma_{\mathsf{G}}} \kappa(\gamma', \gamma_{\mathsf{H}}) \mathsf{O}_{\gamma'}(f),$$

(This is for γ_H near 1; otherwise need a central extension \tilde{H} of H and a character on the centre of \tilde{H}).

the Fundamental Lemma

イロト イポト イヨト イヨト ヨー のくぐ

The 'smooth transfer' conjecture What's known What's left

About the proof Transfer principle

Assume here for simplicity G, H unramified. K_G , K_H – hyperspecial maximal compacts. Then:

- The 'unit element': for f = 1_{K_G} the characteristic function of K_G, f^H = 1_{K_H}.
- The version of this for Lie algebras.
- Explicit matching for the basis of $\mathcal{H}(G//K_G)$ with elements of $\mathcal{H}(G//K_H)$ using Satake.

The 'smooth transfer' conjecture

What's known What's left

About the proof Transfer principles

The reductions in characteristic zero

- The FL for the group reduces to FL for the Lie algebra (Langlands-Shelstad)
- The FL for the full Hecke algebra reduces to the unit element (Hales, 1995), and
- If FL holds for p >> 0, then it holds for all p (global argument).
- Smooth transfer reduces to the FL (Waldspurger). (uses Trace Formula on the Lie algebra).

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

The 'smooth transfer' conjecture

What's known What's left

About the proof Transfer principle

The reductions in characteristic zero

- The FL for the group reduces to FL for the Lie algebra (Langlands-Shelstad)
- The FL for the full Hecke algebra reduces to the unit element (Hales, 1995), and
- If FL holds for p >> 0, then it holds for all p (global argument).
- Smooth transfer reduces to the FL (Waldspurger). (uses Trace Formula on the Lie algebra).

イロト イポト イヨト イヨト ヨー のくぐ

The logical implications

The 'smooth transfer' conjecture

What's known

About the proof Transfer principles

- FL for Lie algebras, char F > 0 (Ngô) ⇒ FL for char F = 0, p >> 0 (Waldspurger p > n), Cluckers-Hales-Loeser p >> 0,
- Thanks to the above reductions, get FL in characteristic zero for all *p*, and all the other conjectures.

イロト イポト イヨト イヨト ヨー のくぐ

The logical implications

The 'smooth transfer' conjecture

What's known

About the proof Transfer principles

- FL for Lie algebras, char F > 0 (Ngô) ⇒ FL for char F = 0, p >> 0 (Waldspurger p > n), Cluckers-Hales-Loeser p >> 0,
- Thanks to the above reductions, get FL in characteristic zero for all *p*, and all the other conjectures.

イロト イポト イヨト イヨト ヨー のくぐ

What's left

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

The 'smooth transfer' conjecture What's known What's left

About the proof Transfer principles

- FL for the full Hecke algebra for char F > 0 (proved extending Ngô's techniques by A. Bouthier, 2014).
 Transfer from characteristic zero using model theory (for p >> 0), Jorge Cely's thesis (exp. 2016)
- Smooth transfer conjecture in positive characteristic.
 We prove it for p >> 0 (the bound is determined by root data of G, H, roughly speaking) by transfer based on model theory. (2015, this talk).
- Still open: smooth transfer for arbitrary char F > 0.

What's left

イロト イポト イヨト イヨト ヨー のくぐ

The 'smooth transfer' conjecture What's known What's left

About the proof Transfer principles

- FL for the full Hecke algebra for char F > 0 (proved extending Ngô's techniques by A. Bouthier, 2014).
 Transfer from characteristic zero using model theory (for p >> 0), Jorge Cely's thesis (exp. 2016)
- Smooth transfer conjecture in positive characteristic.
 We prove it for p >> 0 (the bound is determined by root data of G, H, roughly speaking) by transfer based on model theory. (2015, this talk).
- Still open: smooth transfer for arbitrary char F > 0.

What's left

The 'smooth transfer' conjecture What's known What's left

About the proof Transfer principles

- FL for the full Hecke algebra for char F > 0 (proved extending Ngô's techniques by A. Bouthier, 2014).
 Transfer from characteristic zero using model theory (for p >> 0), Jorge Cely's thesis (exp. 2016)
- Smooth transfer conjecture in positive characteristic.
 We prove it for p >> 0 (the bound is determined by root data of G, H, roughly speaking) by transfer based on model theory. (2015, this talk).
- Still open: smooth transfer for arbitrary char F > 0.

Language of rings

イロト イポト イヨト イヨト ヨー のくぐ

The 'smooth transfer' conjecture What's known What's left

About the proof Transfer principles The language of rings has:

- 0, 1 symbols for constants;
- +, \times symbols for binary operations;
- countably many symbols for variables.

The formulas are built from these symbols, the standard logical operations, and quantifiers. Any ring is a structure for this language.

Example

A formula: ' $\exists y, f(y, x_1, \dots, x_n) = 0$ ', where $f \in \mathbb{Z}[x_0, \dots, x_n]$.

About the proof Transfer principles

Ax-Kochen transfer principle

A first-order statement in the language of rings is true for all \mathbb{Q}_p with p >> 0 off it is true in $\mathbb{F}_p((t))$ for p >> 0. (Depends only on the residue field).

Example

For each positive integer *d* there is a finite set P_d of prime numbers, such that if $p \notin P_d$, every homogeneous polynomial of degree *d* over \mathbb{Q}_p in at least $d^2 + 1$ variables has a nontrivial zero.

First-order means, all quantifiers run over definable sets in the structure (e.g. cannot quantify over statements). (In the Example, cannot quantify over d, it is a separate theorem for each d).

About the proof Transfer principles

Ax-Kochen transfer principle

A first-order statement in the language of rings is true for all \mathbb{Q}_p with p >> 0 off it is true in $\mathbb{F}_p((t))$ for p >> 0. (Depends only on the residue field).

Example

For each positive integer *d* there is a finite set P_d of prime numbers, such that if $p \notin P_d$, every homogeneous polynomial of degree *d* over \mathbb{Q}_p in at least $d^2 + 1$ variables has a nontrivial zero.

First-order means, all quantifiers run over definable sets in the structure (e.g. cannot quantify over statements). (In the Example, cannot quantify over d, it is a separate theorem for each d).

About the proof

Transfer principles

Denef-Pas Language (for the valued field)

Formulas are allowed to have variables of three sorts:

- valued field sort, $(+, \times, '0', 1', ac(\cdot), ord(\cdot))$
- value sort (\mathbb{Z}), (+, '0', '1', \equiv_n , $n \geq 1$)

• residue field sort, (language of rings: +, ×, '0', '1') Formulas are built from arithmetic operations, quantifiers, and symbols ord(·) and ac(·). **Example:** $\phi(y) = \exists x, y = x^{2}$, or, equivalently,

$$\phi(y) = \operatorname{ord}(y) \equiv 0 \mod 2 \land \exists x : \operatorname{ac}(y) = x^{2^{*}}.$$

About the proof Transfer principles

Cluckers-Loeser transfer principle

Cluckers and Loeser defined a class of *motivic functions* which is stable under integration. Motivic functions are made from definable functions (but are not themselves definable). A motivic function *f* on a definable set *X* gives a \mathbb{C} -valued function f_F on X(F) for all fields *F* of sufficiently large residue characteristic.

Theorem

(Cluckers-Loeser, 2005). Let f be a motivic function on a definable set X. Then there exists M_f such that when $p > M_f$, whether f_F is identically zero on X(F) or not depends only on the residue field of F.

Note: we lost the existential quantifiers...

About the proof Transfer principles

Cluckers-Loeser transfer principle

Cluckers and Loeser defined a class of *motivic functions* which is stable under integration. Motivic functions are made from definable functions (but are not themselves definable). A motivic function *f* on a definable set *X* gives a \mathbb{C} -valued function f_F on X(F) for all fields *F* of sufficiently large residue characteristic.

Theorem

(Cluckers-Loeser, 2005). Let f be a motivic function on a definable set X. Then there exists M_f such that when $p > M_f$, whether f_F is identically zero on X(F) or not depends only on the residue field of F.

Note: we lost the existential quantifiers...

The challenges

イロト イポト イヨト イヨト ヨー のくぐ

The 'smooth transfer' conjecture What's known What's left

About the proof Transfer principles

For the FL: express both sides as motivic functions, FL says that their difference vanishes identically. For smooth transfer, two problems:

- Do not know anything about f^H
- Groups, etc. depend on a lot of parameters, and we can only transfer statements with universal quantifiers.

The challenges

イロト イポト イヨト イヨト ヨー のくぐ

The 'smooth transfer' conjecture What's known What's left

About the proof Transfer principles

For the FL: express both sides as motivic functions, FL says that their difference vanishes identically. For smooth transfer, two problems:

- Do not know anything about f^H
- Groups, etc. depend on a lot of parameters, and we can only transfer statements with universal quantifiers.

About the proof Transfer principles

Reduction of Smooth transfer to FL is done in two steps:

- (Langlands-Shelstad): it suffices to prove that κ-Shalika germs (transferred from G) lie in the space spanned by the stable Shalika germs on H. Their proof works in positive characteristic.
- (Waldspurger) Proves the statement about Shalika germs, using TF on the Lie algebra. This is the statement we transfer.
- To transfer this statement we need to transfer a statement about linear dependence. Run into difficulties because cannot transfer statements about linear independence. A vey difficult argument circumvents this.
- If we could prove that *stable* distributions are motivic, it would had been a lot simpler.

About the proof Transfer principles Reduction of Smooth transfer to FL is done in two steps:

- (Langlands-Shelstad): it suffices to prove that κ-Shalika germs (transferred from G) lie in the space spanned by the stable Shalika germs on H. Their proof works in positive characteristic.
- (Waldspurger) Proves the statement about Shalika germs, using TF on the Lie algebra. This is the statement we transfer.
- To transfer this statement we need to transfer a statement about linear dependence. Run into difficulties because cannot transfer statements about linear independence. A vey difficult argument circumvents this.
- If we could prove that *stable* distributions are motivic, it would had been a lot simpler.

About the proof Transfer principles Reduction of Smooth transfer to FL is done in two steps:

- (Langlands-Shelstad): it suffices to prove that κ-Shalika germs (transferred from G) lie in the space spanned by the stable Shalika germs on H. Their proof works in positive characteristic.
- (Waldspurger) Proves the statement about Shalika germs, using TF on the Lie algebra. This is the statement we transfer.
- To transfer this statement we need to transfer a statement about linear dependence. Run into difficulties because cannot transfer statements about linear independence. A vey difficult argument circumvents this.
- If we could prove that *stable* distributions are motivic, it would had been a lot simpler.